Skip to main content

Bayesian networks and other Probabilistic Graphical Models.

Project description

Description: pyAgrum is a scientific C++ and Python library dedicated to Bayesian Networks and other Probabilistic Graphical Models. It provides a high-level interface to the part of the C++ aGrUM library allowing to create, model, learn, use, calculate with and embed Bayesian Networks and other graphical models. Some specific (python and C++) codes are added in order to simplify and extend the aGrUM API. The module is mainly generated by the SWIG interface generator.

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

pyAgrum_nightly-1.5.2.9.dev202302131676243872-cp311-cp311-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.11 Windows x86-64

pyAgrum_nightly-1.5.2.9.dev202302131676243872-cp311-cp311-macosx_11_0_arm64.whl (4.0 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

pyAgrum_nightly-1.5.2.9.dev202302131676243872-cp311-cp311-macosx_10_9_x86_64.whl (4.3 MB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

pyAgrum_nightly-1.5.2.9.dev202302131676243872-cp310-cp310-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.10 Windows x86-64

pyAgrum_nightly-1.5.2.9.dev202302131676243872-cp310-cp310-macosx_11_0_arm64.whl (4.0 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

pyAgrum_nightly-1.5.2.9.dev202302131676243872-cp310-cp310-macosx_10_9_x86_64.whl (4.3 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

pyAgrum_nightly-1.5.2.9.dev202302131676243872-cp39-cp39-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.9 Windows x86-64

pyAgrum_nightly-1.5.2.9.dev202302131676243872-cp39-cp39-macosx_11_0_arm64.whl (4.0 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

pyAgrum_nightly-1.5.2.9.dev202302131676243872-cp39-cp39-macosx_10_9_x86_64.whl (4.3 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

pyAgrum_nightly-1.5.2.9.dev202302131676243872-cp38-cp38-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.8 Windows x86-64

pyAgrum_nightly-1.5.2.9.dev202302131676243872-cp38-cp38-macosx_11_0_arm64.whl (4.0 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

pyAgrum_nightly-1.5.2.9.dev202302131676243872-cp38-cp38-macosx_10_9_x86_64.whl (4.3 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

File details

Details for the file pyAgrum_nightly-1.5.2.9.dev202302131676243872-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.5.2.9.dev202302131676243872-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 2f319df29a19bfaed28a5185fccd85e5b489940e6ae7f869d2a5676e48f358aa
MD5 6a2c6c0164e8eafd0bda9ae9ac32edf1
BLAKE2b-256 98ff0964e9bc279c0a27500e47dd4fa722256cbf84826d056ee0acf8f9074875

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.5.2.9.dev202302131676243872-cp311-cp311-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.5.2.9.dev202302131676243872-cp311-cp311-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 e7f33407f1f14540e9f8666c2efe5be38261f71562084567430cb85af1861653
MD5 0cc7d5a29828b7643591859a554ef7a4
BLAKE2b-256 3d2a8eebc350b91632250d0696a9971864c686a7ddc12a92835f19b44b083f72

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.5.2.9.dev202302131676243872-cp311-cp311-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.5.2.9.dev202302131676243872-cp311-cp311-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 79f78d454dd6105b2972c8480a1481a9990c2f22bfbaee482c6a3a144daddbe9
MD5 7d58269ea487667ca125075eb790d815
BLAKE2b-256 a37193839f3462fcf53c062a516bf7ad009c22280e7770f0e7b647b4d40adb47

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.5.2.9.dev202302131676243872-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.5.2.9.dev202302131676243872-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 1c031250b377c4e02e52d351758af80b3a8c226eb9584f84952200bba5e813ea
MD5 37af39b2c5315f23719b29604f67e5ae
BLAKE2b-256 9e579f74d975ed7a31b69615e507a8b5c8d8ac4d85599703211ed25b74bd4cc6

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.5.2.9.dev202302131676243872-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.5.2.9.dev202302131676243872-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 ee065558b61383a6e98146cb0811b852e605bd0b994cc108459ee2154c620a34
MD5 b2b0fe0305adc0d61870c0f64d55656f
BLAKE2b-256 e69fb87b28e1c0c62ec328e4c51fd775cfc2332c80c9d6526fc9b8718a794b0c

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.5.2.9.dev202302131676243872-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.5.2.9.dev202302131676243872-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 dcd28927d7c70b07a66a27d9223211bd2b30455a19eb9e719cd738b061ba9b38
MD5 52fc7c8597347c12b3840211ce3a11b8
BLAKE2b-256 b7072918661e8c761a86866d13de005e5d3aea022b8cde9619857eb93328f3fe

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.5.2.9.dev202302131676243872-cp310-cp310-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.5.2.9.dev202302131676243872-cp310-cp310-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 fee3eeb020b1db4b42696a4e3fba21077a39de3ae28cd68dea7bdcbbadd3cdcc
MD5 d3bf486559705a0bef464f3dc6d0ee54
BLAKE2b-256 6767831dcf264cb9b7385c14a91bc935caaf05a1a67d43c8eaf299e033b3781a

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.5.2.9.dev202302131676243872-cp310-cp310-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.5.2.9.dev202302131676243872-cp310-cp310-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 6b8c6b7eaac5cc36587b63e45925b3e8a72b63371c37587717be925dce807410
MD5 f1110a13ad7fe2ecad4ba570408c88b8
BLAKE2b-256 da8943a42f5c36bcb2074ae7439d44114135f2d73689cf0126ab8550bad459d4

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.5.2.9.dev202302131676243872-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.5.2.9.dev202302131676243872-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 d94afb4939b53b8df2f9704ef4af41af82a6aed16e243fa19b7e133912c7dde5
MD5 38c1878f451e65ce6177be650d0f46df
BLAKE2b-256 4c06e4d7d57c9f7933ca13b755d15bcf352a095a22c310c9e2169e652eed988f

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.5.2.9.dev202302131676243872-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.5.2.9.dev202302131676243872-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 72c1143946c7b3656a5212254f06c2dac5195ce8e1c03d1f1bf0017d7acb2687
MD5 7d7e876fc77bd8b907b19bea9e002e5b
BLAKE2b-256 6fbf5f1286df24e12f086a927d55058350c360ae125d3250f89f52795e8d34a0

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.5.2.9.dev202302131676243872-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.5.2.9.dev202302131676243872-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 dda8ced0d2e345f94e89295d272ec69997529748d2e7b8ca54f8b99e52dd3998
MD5 851a9c225a33bfc38b200db27b4bd5ac
BLAKE2b-256 3d58160f6e0ef8cb387d165c9d44cc141c52e6ceaa26377bf2672346b01af717

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.5.2.9.dev202302131676243872-cp39-cp39-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.5.2.9.dev202302131676243872-cp39-cp39-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 9d1777a8a38c9385cd8b426f32648ed9da43983dd07ff32a6cedd3d61e11e62a
MD5 0377d90ae887e6b392dcfcff6d4de86c
BLAKE2b-256 376ae4bc1b9ec80e02ec9f99c7c78c813cf5f5fc928b1b28a2ba7a59b4dfb4c8

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.5.2.9.dev202302131676243872-cp39-cp39-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.5.2.9.dev202302131676243872-cp39-cp39-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 2183b737911f0c73e483516c7e166090bbebfe2b1814b92a6c2346d2768b09c4
MD5 a4921523dda247cbe442aa4af53f4528
BLAKE2b-256 f27277448bc5becbfe243794ee770a6ee2ceda6bd5d6ccd8f73cfae0a5f21c1f

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.5.2.9.dev202302131676243872-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.5.2.9.dev202302131676243872-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 a5f27af731eff456b40afa2a459271637116eab1752f7a286dd6fa7e3237ca0b
MD5 a4a49b2784d5bc2bc095697af88e1f0e
BLAKE2b-256 d976b4564fd23a485d273d26dfcda8b3ce56d0f60ee24ddb4d1d90a7dd6c45bc

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.5.2.9.dev202302131676243872-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.5.2.9.dev202302131676243872-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 72e173b281e5bb93d368426d4c552030981183bfeebabb7864520a08cc5bc995
MD5 77c74a6ce15c3eaf2f81169ecab452c8
BLAKE2b-256 8a11c16e3d5a8c980bc45a988438ea70f90ca89ba11cb9c96ce56427a948c135

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.5.2.9.dev202302131676243872-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.5.2.9.dev202302131676243872-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 716458bbd5b82f342b962e5a97c1ecd97c7ff16871ff5da2ea697442ebedad3f
MD5 290a96deee1910019c7674ef1f0bd3ae
BLAKE2b-256 b6052ecb4f5d15b4f63d0ac966c85929e852c368ea3e8d4d5b573cb4f5ecce81

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.5.2.9.dev202302131676243872-cp38-cp38-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.5.2.9.dev202302131676243872-cp38-cp38-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 125cf1de7b3d3f90ae377736d808f02fffee09635105f4467246cd589b393f2a
MD5 a9fc06548f5343fa68a510155ed96b71
BLAKE2b-256 aeefa225225752ceb40b89b5569b3bbacebccefb0429643287e3e36b48f6617b

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.5.2.9.dev202302131676243872-cp38-cp38-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.5.2.9.dev202302131676243872-cp38-cp38-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 f9aa47401320c651b39fe9dfc2173a44362c9b8b673ac625b501cffa8864bcf7
MD5 8298887a6ce458dd085b052792051bfe
BLAKE2b-256 20e1f54c8de222f87a5bcb8c5d049fb0df520b755f60f594193fce2e286d73fb

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.5.2.9.dev202302131676243872-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.5.2.9.dev202302131676243872-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 61987072b2598e6d85a34e12d0eb1405c41799490d8be71f5205264a0920d2a2
MD5 db624214bf0940f2717655e8eb0177d0
BLAKE2b-256 913a7344129c934d23e71a86a45244c41541e9aaa5576af42e867216a4a413dd

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.5.2.9.dev202302131676243872-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.5.2.9.dev202302131676243872-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 ecd59d45126f79afd0071adf9a23dc78f60db2ec71ff8c477bcab1cb1d35c04d
MD5 5a019f3c2b25d8643ae899b1bf9bbe8c
BLAKE2b-256 e6e1f62f77cecb78c5075b207e7c22ea5fd36c774e51bc31b4fb563726f3793a

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page