Skip to main content

Bayesian networks and other Probabilistic Graphical Models.

Project description

Description: pyAgrum is a scientific C++ and Python library dedicated to Bayesian Networks and other Probabilistic Graphical Models. It provides a high-level interface to the part of the C++ aGrUM library allowing to create, model, learn, use, calculate with and embed Bayesian Networks and other graphical models. Some specific (python and C++) codes are added in order to simplify and extend the aGrUM API. The module is mainly generated by the SWIG interface generator.

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

pyAgrum_nightly-1.5.2.9.dev202302171676359240-cp311-cp311-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.11 Windows x86-64

pyAgrum_nightly-1.5.2.9.dev202302171676359240-cp311-cp311-macosx_11_0_arm64.whl (4.0 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

pyAgrum_nightly-1.5.2.9.dev202302171676359240-cp311-cp311-macosx_10_9_x86_64.whl (4.4 MB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

pyAgrum_nightly-1.5.2.9.dev202302171676359240-cp310-cp310-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.10 Windows x86-64

pyAgrum_nightly-1.5.2.9.dev202302171676359240-cp310-cp310-macosx_11_0_arm64.whl (4.0 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

pyAgrum_nightly-1.5.2.9.dev202302171676359240-cp310-cp310-macosx_10_9_x86_64.whl (4.4 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

pyAgrum_nightly-1.5.2.9.dev202302171676359240-cp39-cp39-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.9 Windows x86-64

pyAgrum_nightly-1.5.2.9.dev202302171676359240-cp39-cp39-macosx_11_0_arm64.whl (4.0 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

pyAgrum_nightly-1.5.2.9.dev202302171676359240-cp39-cp39-macosx_10_9_x86_64.whl (4.4 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

pyAgrum_nightly-1.5.2.9.dev202302171676359240-cp38-cp38-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.8 Windows x86-64

pyAgrum_nightly-1.5.2.9.dev202302171676359240-cp38-cp38-macosx_11_0_arm64.whl (4.0 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

pyAgrum_nightly-1.5.2.9.dev202302171676359240-cp38-cp38-macosx_10_9_x86_64.whl (4.4 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

File details

Details for the file pyAgrum_nightly-1.5.2.9.dev202302171676359240-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.5.2.9.dev202302171676359240-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 a18f4f68be37d1b950fd6ef815906d8028dcaff12f47411037982b599622ff99
MD5 9ae0ae5a1d366e90e12d7cbb0178d417
BLAKE2b-256 e1b0924d90f1958d3f3007281fb4ab3a1eff51607b73b94532a6b81c531461e9

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.5.2.9.dev202302171676359240-cp311-cp311-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.5.2.9.dev202302171676359240-cp311-cp311-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 c376564743203f38304ef356f77ba1c54a65a0644014f52d95e8500e99442ab0
MD5 5ee4ab5fa3ab8fd78bc1e3126983c94b
BLAKE2b-256 ad39df16a831240df9f27abbbe55a8400a2d1a91a41a465976c8614e50ccef3f

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.5.2.9.dev202302171676359240-cp311-cp311-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.5.2.9.dev202302171676359240-cp311-cp311-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 dc7b70d006ca1f25ddb1ef0d94e0d74361031f0709fd5eedb96ab4ba3928ad10
MD5 0a5e560524ca1a4e9262ef2d8f2f5f2a
BLAKE2b-256 cc1ab84af59abd192f7bd8ec05eb10fa7ad59f5f82dbcea2fa88272660c3a5bf

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.5.2.9.dev202302171676359240-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.5.2.9.dev202302171676359240-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 fb0e1d98628cc71ca4871bba23543582f345a1a7faf02d0338ad398a3ed1f036
MD5 74736c12f3eaa6a17652cdc8373babcf
BLAKE2b-256 5d01d5d6ba015da3b87d2a6bee63b37a212595b3c8fa259e856f36b210df3e11

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.5.2.9.dev202302171676359240-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.5.2.9.dev202302171676359240-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 820419c697e966ce215106a48a44068744aed4578454db8a8077cbf2ed5bcac4
MD5 faaf0e4e51e9d7653701e2f84d436341
BLAKE2b-256 b69f11712b6b2f6883fa4323455b9c2a9823d0ec212f2e9af511f94b02ed9efb

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.5.2.9.dev202302171676359240-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.5.2.9.dev202302171676359240-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 c2b5c5ab5157c273fe8c1439aa59db89ec6153306771b6066e3eefcbcf03afd0
MD5 9bc0187f4b6c09d00087ffcdb47a7093
BLAKE2b-256 7787b22e48a6c015b40936c98d54321bdfd147b4c3909fa480ac8f1ac7b00637

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.5.2.9.dev202302171676359240-cp310-cp310-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.5.2.9.dev202302171676359240-cp310-cp310-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 9bf8bacde9d3251cb1429636274b0eb917893f53236212f867ee67cc91ddf4d3
MD5 dd16d1613475d0fe5022fb2fa722fff8
BLAKE2b-256 5c91e2c93f2bfb322b8240bc448141a440afefb59a1c871b7ca62e06afd3eeca

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.5.2.9.dev202302171676359240-cp310-cp310-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.5.2.9.dev202302171676359240-cp310-cp310-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 3c1f447d9498b1a7e254df7b226f8144ea0254f5b1a917a64df76db7d6544e08
MD5 6e90480beee4ffc54a5d7600637cdb5f
BLAKE2b-256 e2b53d83b519cd33ca7dfd120c2ec93216b6a143a32dd353f58275fb7e4d19a6

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.5.2.9.dev202302171676359240-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.5.2.9.dev202302171676359240-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 f09f33a3ca30a73d99cd236aa89efceaf09346a3bffde1130529ae425fcac372
MD5 b63caa9b2cc1600257a082b0ea75b13b
BLAKE2b-256 009bc42ac249f2b9e0832d568085d0b91e5a699e6161179e86890fabcef2f39c

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.5.2.9.dev202302171676359240-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.5.2.9.dev202302171676359240-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 278274d4df4db96d0bc2b48f4ca2b9970c4a6cf03cd63c6e55f15e5dfe1bfc63
MD5 b1ceee556c2514752e973209f7c27a9b
BLAKE2b-256 19484a55399dc86137abc669dc9e29fbb4c3f226d341146f6beac8194557c9fe

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.5.2.9.dev202302171676359240-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.5.2.9.dev202302171676359240-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 f7c38f8ff15a713d993074add39dfc0cca9ea17a9ed9995af2b10ae49c3c772e
MD5 fc48d4eac14c01794fd9a10f46731991
BLAKE2b-256 d813af7347c33fd0443862c6388f44416af49fbd86235a75a70750fba59f8be9

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.5.2.9.dev202302171676359240-cp39-cp39-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.5.2.9.dev202302171676359240-cp39-cp39-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 f48678654741e48a9fd74d86a3ec3e6e8f86f58143b81c89b74997b6f844a5bc
MD5 ff568a54ae98994252970fa996bda973
BLAKE2b-256 f6a64a47f8ebf7b7c83e290e6a9489438eb3f19edb6eb62bceb2b71bc81616bf

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.5.2.9.dev202302171676359240-cp39-cp39-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.5.2.9.dev202302171676359240-cp39-cp39-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 beda867659d298141d3bc5ddcde00f3fd6229557e2b363fa2e0628c9cee11f71
MD5 25b0f16b3a1a503ae5246f4fab39b929
BLAKE2b-256 fe85f4b3986280f47dfa9710391d08ec2ec3a668f887ddeae7c2aec7241f148f

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.5.2.9.dev202302171676359240-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.5.2.9.dev202302171676359240-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 14f2b38a7b3da246874d79c1f77ef7bfa862037d52c09ac011fbbaa61a742892
MD5 565756abb9c6873cc8c11260161df8ba
BLAKE2b-256 aafce13cf51d866dec6f1b7dd7866cd475f92de61ce4487ea121fb1c7c73016f

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.5.2.9.dev202302171676359240-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.5.2.9.dev202302171676359240-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 f9749b0185f1fde032464e0fa7527fa96dbaf4c176a0a530f4f258ff4d3240d7
MD5 81ad3529c192c6efd94bd7f8121bfa79
BLAKE2b-256 7db355de3417b277a70a423d8ec4f8c20472e6ffa600486b508a0ef1d610e554

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.5.2.9.dev202302171676359240-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.5.2.9.dev202302171676359240-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 e8d33e9f2904439b478496f0e37a71fca7d6cae3a38f84c1020b8bdb10984ab3
MD5 bfeb77e47c09b75e99f5ce528834121f
BLAKE2b-256 a6954067718cecfd9562406c5f83e5e31f0cbc43f8130e737f4349a34edbf2ed

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.5.2.9.dev202302171676359240-cp38-cp38-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.5.2.9.dev202302171676359240-cp38-cp38-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 fca60825aab394e3da27df7ce9198d26088a06e937829505c00adf2b6bc4b056
MD5 60d07c68a99fb95e8b609df98b18e29f
BLAKE2b-256 6fe54919a1f0df0cb5144b647a7efd55d0c676fb38025eed01df7ddf324bcb78

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.5.2.9.dev202302171676359240-cp38-cp38-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.5.2.9.dev202302171676359240-cp38-cp38-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 74edf593f3b18f750d1512710ebe1da48de68111f2b60f95fe06fa166a760961
MD5 3f3ff970731704bd10c163ad57256a1e
BLAKE2b-256 330a4a241b7347db183d41af97628add229e79b58d0a859438fcb09d1711b45f

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.5.2.9.dev202302171676359240-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.5.2.9.dev202302171676359240-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 cbcb611e060592fd1dad62d96b92bebc5b9483a961e1bc3af4f52593b96a49c4
MD5 de36c139368b36c851097adeddf45f13
BLAKE2b-256 5f08170fe8a9d4ae01edf8912a4d5b8ccc33388b583756b9a45ae540c28bf254

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.5.2.9.dev202302171676359240-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.5.2.9.dev202302171676359240-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 34f2275740212b87767baa0ad45da786bf022eced0e2c1c561aa9a47d06b7e9d
MD5 bcf25570227024e9c895306d70c8e988
BLAKE2b-256 ef82d5386d2269aa13a140910a8075d55097392972d123c002883385bf5d75d1

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page