Skip to main content

Bayesian networks and other Probabilistic Graphical Models.

Project description

Description: pyAgrum is a scientific C++ and Python library dedicated to Bayesian Networks and other Probabilistic Graphical Models. It provides a high-level interface to the part of the C++ aGrUM library allowing to create, model, learn, use, calculate with and embed Bayesian Networks and other graphical models. Some specific (python and C++) codes are added in order to simplify and extend the aGrUM API. The module is mainly generated by the SWIG interface generator.

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

pyAgrum_nightly-1.5.2.9.dev202302181676359240-cp311-cp311-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.11 Windows x86-64

pyAgrum_nightly-1.5.2.9.dev202302181676359240-cp311-cp311-macosx_11_0_arm64.whl (4.0 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

pyAgrum_nightly-1.5.2.9.dev202302181676359240-cp311-cp311-macosx_10_9_x86_64.whl (4.4 MB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

pyAgrum_nightly-1.5.2.9.dev202302181676359240-cp310-cp310-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.10 Windows x86-64

pyAgrum_nightly-1.5.2.9.dev202302181676359240-cp310-cp310-macosx_11_0_arm64.whl (4.0 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

pyAgrum_nightly-1.5.2.9.dev202302181676359240-cp310-cp310-macosx_10_9_x86_64.whl (4.4 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

pyAgrum_nightly-1.5.2.9.dev202302181676359240-cp39-cp39-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.9 Windows x86-64

pyAgrum_nightly-1.5.2.9.dev202302181676359240-cp39-cp39-macosx_11_0_arm64.whl (4.0 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

pyAgrum_nightly-1.5.2.9.dev202302181676359240-cp39-cp39-macosx_10_9_x86_64.whl (4.4 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

pyAgrum_nightly-1.5.2.9.dev202302181676359240-cp38-cp38-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.8 Windows x86-64

pyAgrum_nightly-1.5.2.9.dev202302181676359240-cp38-cp38-macosx_11_0_arm64.whl (4.0 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

pyAgrum_nightly-1.5.2.9.dev202302181676359240-cp38-cp38-macosx_10_9_x86_64.whl (4.4 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

File details

Details for the file pyAgrum_nightly-1.5.2.9.dev202302181676359240-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.5.2.9.dev202302181676359240-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 33d315b7b9a38b3543dd01a5e444670b4a506620609fab28a4d73388dca85609
MD5 6f14a623eaf64da2c65a3b580ee0e586
BLAKE2b-256 0491b751e06e6c6c71e72691d9a3fd4bff7f04df1523bbc08e9884622a5f3cbe

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.5.2.9.dev202302181676359240-cp311-cp311-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.5.2.9.dev202302181676359240-cp311-cp311-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 cfbdb1c4f012da6efa157e50f1e06c5164b6e429745f5bcde286ce722d3c09f9
MD5 3a4e387376f229782e78016701777fec
BLAKE2b-256 b1f4297b5344e59856643ec0be06510a044308326f7c2823f2460f26a18ae5a3

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.5.2.9.dev202302181676359240-cp311-cp311-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.5.2.9.dev202302181676359240-cp311-cp311-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 5d3c12b32ed8c9fb819af10937cc8eb41a3cdeff0154dca3d5b269de70eba07e
MD5 eb507165a44e06dac3e44e44efb10fd1
BLAKE2b-256 f711da523e4da06a7b327644ec5cc09253be42781cabe64336fac4142bb6e23a

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.5.2.9.dev202302181676359240-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.5.2.9.dev202302181676359240-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 0eed5dc73045abe3bf55005f23d59be3195ec62a58fc182725f0e9a8fe13babc
MD5 25264f158883a2a92c70cd0c7dbe9978
BLAKE2b-256 b75c04d76007fdf15f90ae15764660835d2db1dc50c28bb694ae118e3ac5515d

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.5.2.9.dev202302181676359240-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.5.2.9.dev202302181676359240-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 a41034c7c32a67fdca4d27cb9748c7cba6a8c87ca731689eaaeb905f71047bb1
MD5 420f8c5ef077c107f20de6e96277f9cd
BLAKE2b-256 5d1d9125131b14cc0d00ff972863050fea80f5d530f4bf808bc0e2814142a0d6

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.5.2.9.dev202302181676359240-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.5.2.9.dev202302181676359240-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 f0efd091b3c77443412d1437911ab3065e3080bb613f3e9c1d4a145048cdb1ba
MD5 dd22316cabb3c39bd1b7afb507829009
BLAKE2b-256 15d60a17589bbc39f5e3ce4e55002b91cea495da19d9e79596fdf495ee0a16a0

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.5.2.9.dev202302181676359240-cp310-cp310-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.5.2.9.dev202302181676359240-cp310-cp310-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 1d285dbcb24959ea1e0a71897b7113453f09403fa7fe540532f9e3b370e49869
MD5 336d140a2a05725d83511d5d9271c503
BLAKE2b-256 38695cc1a2edd7bbb07e9f7fa039e0d572af7e91380aac9b1f61749ef4c1d2a4

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.5.2.9.dev202302181676359240-cp310-cp310-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.5.2.9.dev202302181676359240-cp310-cp310-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 a21211c414556363d1ba90c8edbd78a183076f0936f55f805d24ec26857acc76
MD5 60d8e683011a54028b22a593c50f3940
BLAKE2b-256 dd9f4d8dacb4171fdaf92dd9824869b325a527ecde35b013ba7a9393bd3b09ec

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.5.2.9.dev202302181676359240-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.5.2.9.dev202302181676359240-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 ed46fc8ec1d0ca2efa2e1272dfccfd8a242da2a108cd6f476cd106e5236dbc98
MD5 b7f6a8c985850a9dfc844c1f0f03ef74
BLAKE2b-256 a7ab72607e71fa29d2972addaafe4d1297455fdc458a803f0e8135257f11e624

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.5.2.9.dev202302181676359240-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.5.2.9.dev202302181676359240-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 27bd9535a4b62a719183f9c97dfd6b935b9073f435b17aea333482a0178c619a
MD5 bda617cad67978334be626cffc8b541e
BLAKE2b-256 d0ded307a91bd67c4fc3a6a15c1df4362371fdbbea542a9e94b17bd155172db3

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.5.2.9.dev202302181676359240-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.5.2.9.dev202302181676359240-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 21b7d1b9e62a22b63590ce04e4bf684e28b986d0ea8ae1b4ddf2a5898f5e571b
MD5 07ac7392c49f2306123c562445ca85ab
BLAKE2b-256 f1697f73120f8d2f98bd086a9ecec02d48ad28aaebb132f62df026c969e1932f

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.5.2.9.dev202302181676359240-cp39-cp39-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.5.2.9.dev202302181676359240-cp39-cp39-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 f8275ae6f4816fc43b18571d22386f3f044a73831289395964cb191a7d6a1081
MD5 f74a120030546949efa048f0324cdaa7
BLAKE2b-256 81183e2113c70674cc5b742c87441768a9caf32ff861881fab45bbb7a64c4286

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.5.2.9.dev202302181676359240-cp39-cp39-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.5.2.9.dev202302181676359240-cp39-cp39-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 201a733fe05ee12d830a4724b8e0ce770998b888c4850b18904b0bd4f339744b
MD5 e33526221e0601382d3b6d46d1108693
BLAKE2b-256 c549b420c1b240e9754e7c7347aa9891b87b51f161d101eec631883bc355551d

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.5.2.9.dev202302181676359240-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.5.2.9.dev202302181676359240-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 51490058441b1d2f36c0b926610edf6330333053c646de8f3ed30a1d0c0ac460
MD5 4ccf5c24e0a223d2ba9e482525f7d474
BLAKE2b-256 22ef767f2017fffd72308ab22110f44e4a517e4eda2bccd16af020cf7209013a

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.5.2.9.dev202302181676359240-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.5.2.9.dev202302181676359240-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 175ffc1956868ac2991b77b054e4fc1d6d84f3b5f45bccbc42b3682ea030a918
MD5 ead6ed2c50e83c292d10623ece941078
BLAKE2b-256 ac8c78b2d7556a1b1b4a0f3adefa02897fcb5a99f620814b5e0ae101fe8497af

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.5.2.9.dev202302181676359240-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.5.2.9.dev202302181676359240-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 012b9d858cf83168628f4104eb1eb3e9a43081a7a60d1f88eb3a1f6b82c961a5
MD5 a100e5b49d618ae8ad9e0930e490afff
BLAKE2b-256 d0ebb52d62554474439617200f8b6da51156b7d11ae56a3048233f867d536bf1

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.5.2.9.dev202302181676359240-cp38-cp38-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.5.2.9.dev202302181676359240-cp38-cp38-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 f4f9b5dd23d942154469f1cedf4b0efe2871501026ff7218552cef1d106e8a2c
MD5 5953a635e207e6c6d9e65b389053b445
BLAKE2b-256 2df3b782acc23de69e2beaad7d91e75d4016c288115e2ab908c9dffc4fedafb1

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.5.2.9.dev202302181676359240-cp38-cp38-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.5.2.9.dev202302181676359240-cp38-cp38-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 af6ed177313ea45867a9fe1743b27ba615ee1ffc8a66649afc4f781bfa241aff
MD5 5424b13c09878970efd96e96f3b7a7b9
BLAKE2b-256 af3ce177477997c3361fc21cfebd9f8e8a0e3f7f4bb419f585675c965088372c

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.5.2.9.dev202302181676359240-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.5.2.9.dev202302181676359240-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 c7957daeea035d4f88eafa6b04cd731147af75b808e944b758fd0ff7439371a6
MD5 886201f18150925309f64354da22269d
BLAKE2b-256 c466b3691b24ed287faa5cb64be964aa4338f3b515340b8dda024df9fe8ecf69

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.5.2.9.dev202302181676359240-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.5.2.9.dev202302181676359240-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 4a5e82aace3c7667e1e32618b1aca1a0c2a4eb7518e3c0b6385d081117e01e32
MD5 943159014035e8d117cf5cc79899672a
BLAKE2b-256 7f45043025c3d16c48cd95abc5a7f1c78dcf30f3dd74e4d65b7b1b34576e2da9

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page