Skip to main content

Bayesian networks and other Probabilistic Graphical Models.

Project description

Description: pyAgrum is a scientific C++ and Python library dedicated to Bayesian Networks and other Probabilistic Graphical Models. It provides a high-level interface to the part of the C++ aGrUM library allowing to create, model, learn, use, calculate with and embed Bayesian Networks and other graphical models. Some specific (python and C++) codes are added in order to simplify and extend the aGrUM API. The module is mainly generated by the SWIG interface generator.

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

pyAgrum_nightly-1.5.2.9.dev202302211676877868-cp311-cp311-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.11 Windows x86-64

pyAgrum_nightly-1.5.2.9.dev202302211676877868-cp311-cp311-macosx_11_0_arm64.whl (4.0 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

pyAgrum_nightly-1.5.2.9.dev202302211676877868-cp311-cp311-macosx_10_9_x86_64.whl (4.4 MB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

pyAgrum_nightly-1.5.2.9.dev202302211676877868-cp310-cp310-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.10 Windows x86-64

pyAgrum_nightly-1.5.2.9.dev202302211676877868-cp310-cp310-macosx_11_0_arm64.whl (4.0 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

pyAgrum_nightly-1.5.2.9.dev202302211676877868-cp310-cp310-macosx_10_9_x86_64.whl (4.4 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

pyAgrum_nightly-1.5.2.9.dev202302211676877868-cp39-cp39-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.9 Windows x86-64

pyAgrum_nightly-1.5.2.9.dev202302211676877868-cp39-cp39-macosx_11_0_arm64.whl (4.0 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

pyAgrum_nightly-1.5.2.9.dev202302211676877868-cp39-cp39-macosx_10_9_x86_64.whl (4.4 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

pyAgrum_nightly-1.5.2.9.dev202302211676877868-cp38-cp38-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.8 Windows x86-64

pyAgrum_nightly-1.5.2.9.dev202302211676877868-cp38-cp38-macosx_11_0_arm64.whl (4.0 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

pyAgrum_nightly-1.5.2.9.dev202302211676877868-cp38-cp38-macosx_10_9_x86_64.whl (4.4 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

File details

Details for the file pyAgrum_nightly-1.5.2.9.dev202302211676877868-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.5.2.9.dev202302211676877868-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 0abb15db047205132cdb1fe68669b42a5ae95813f5b318f90a1d1fdec794488d
MD5 4c5fe5c5ec70fe418bd6412902f000d6
BLAKE2b-256 1c77300c3e90d07e03747742c8f5808a8485fb35eb6caaf54e7c89a806770a61

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.5.2.9.dev202302211676877868-cp311-cp311-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.5.2.9.dev202302211676877868-cp311-cp311-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 434709924952553f90e77c75d97422d94b806de44a1354e714b1807275f45510
MD5 d7860be1f047fa2eba22fa810d1a5410
BLAKE2b-256 8186a51b1dcc39fb7a45e28e389bb492cb1ece8c48d8d4c5728c79afcba1f90a

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.5.2.9.dev202302211676877868-cp311-cp311-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.5.2.9.dev202302211676877868-cp311-cp311-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 43bd34c7259f3656b451b204893c7e2d43d5b3c6c9bb114a5f0161aa15ef23a0
MD5 4a48bbab8c84ff1d2e123584ee26606b
BLAKE2b-256 01adf73af5d0129eb34aba38838357916b18d8a8ca9f6aee6c2ecc426ef2018c

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.5.2.9.dev202302211676877868-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.5.2.9.dev202302211676877868-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 1a9c99300567b17d6267256262cc86e16c2fefab40de5a74261b59a1dd59617c
MD5 45732032303694ad7bdade6509bbf9fc
BLAKE2b-256 e903a5d6373729e1dcf85cb1791c53cf2a32d750ca81a5f9530cb2c3d956b0d3

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.5.2.9.dev202302211676877868-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.5.2.9.dev202302211676877868-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 57e95274054b3186589d76dce24e5b67ac3ab7e296da5885cb49b194d052e5b5
MD5 66243b73d41fb00b420db095984de098
BLAKE2b-256 34ba5538f5aaccc5ed42042deaafc19ce788fdb9f154d286173312d0786b8846

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.5.2.9.dev202302211676877868-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.5.2.9.dev202302211676877868-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 54265f4c414e6871655c07abd89cade30e2331a36a4f4272c69576683dc7f6bd
MD5 0cd57b6e763a3e7302782c9538250235
BLAKE2b-256 b22a1af5ce2ca18b11fb73bf80b8ce100f163fc52d0f68d674a719f0c6453607

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.5.2.9.dev202302211676877868-cp310-cp310-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.5.2.9.dev202302211676877868-cp310-cp310-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 3401ccb7fa3f7d09fde922035d5539911f01bc407c0d25890a9ebcdc186d8867
MD5 8a6178400d6df671c5d2f3cbf8c32b67
BLAKE2b-256 509ae85fa668f809d28f75e811638b70b01c617d1ee7e31027cad026e7def56d

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.5.2.9.dev202302211676877868-cp310-cp310-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.5.2.9.dev202302211676877868-cp310-cp310-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 5a93020f47c339907fed10ef11ccd7d7b54828c19ad07b7bad2076185800156d
MD5 fbeb1205e7a1fe5c48497b08eb2d85f0
BLAKE2b-256 f2b27cfe3df3d2004b064bd473c926eae9eb2cb97e734026ed93a08a7b308366

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.5.2.9.dev202302211676877868-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.5.2.9.dev202302211676877868-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 2e20e4c1f1fa7b556e998baa3de6ea22633d2fb1d4d67f8f7d9d01924d8df6b1
MD5 f4f1c6dac6b305e072fd3e4ddf45c985
BLAKE2b-256 324766b90b652107c0baf901189bfbbc2d15797b106bfe9ab09269e4c1baefeb

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.5.2.9.dev202302211676877868-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.5.2.9.dev202302211676877868-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 611c1c5cb82d12b87524a07169736a9470ab44037902c467d7d733dacd48d750
MD5 73ff5d61e2bb131f600a1e7599053318
BLAKE2b-256 a807428a90a184e3d380010e69e4b63b098a66e121db1db6a92fc5aa5f24d109

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.5.2.9.dev202302211676877868-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.5.2.9.dev202302211676877868-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 887c0256f8df7c5f0cc5df33c44880bdb8da06366988894fc5d7c6850b3c0963
MD5 4ed19f46f5fa9f99d2d14703d04ca6d8
BLAKE2b-256 bb8f3145e1bd3a0172f9e9eb323a13fcd5c570a4e3e7b1919b6582b8e4b885ba

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.5.2.9.dev202302211676877868-cp39-cp39-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.5.2.9.dev202302211676877868-cp39-cp39-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 ca28b3628d5860da5965814980c49e524884508a06f85b837c08ffb6126921eb
MD5 e674badff0d7afbc600acdb33dbb0707
BLAKE2b-256 0ba8819992eb3937c604d3591ca97372d893692dca937d9d70de7e5ebfc273d7

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.5.2.9.dev202302211676877868-cp39-cp39-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.5.2.9.dev202302211676877868-cp39-cp39-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 e40adf1d8286f44c0ea2426b77155418ba2124876750b12697965a6ac9c77545
MD5 ae2b091bd40b126c9d1698353e8447a9
BLAKE2b-256 1c4a4f573887ee6c6bad280cdbe180d7d5c87c33730a78e2e623171cdb44ce76

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.5.2.9.dev202302211676877868-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.5.2.9.dev202302211676877868-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 4d894f86f66dcc8947f57a6baa1026da600d23d711c2cf9e764b391b83ed0e57
MD5 5a32280ed4c2374fe180f9b8c7bf43a4
BLAKE2b-256 d39c40d2f5f37430fc539d6bf1795472e5b8337be1b4e1f7fae7acb743cb4190

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.5.2.9.dev202302211676877868-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.5.2.9.dev202302211676877868-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 065c0706a040c56efdd76314242c562eca5fc5853a7042805d65e147c8d56044
MD5 5ed9c3056c1ab1cfe0030c052795f596
BLAKE2b-256 14db68d219e691b3c9a5f85da6b08fc54324da455146d5879a5b01dbe8053ca8

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.5.2.9.dev202302211676877868-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.5.2.9.dev202302211676877868-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 30cd348b189e6fddddaf4ffe60a19d96150ee3294dc0dce924f2e937585e83ff
MD5 fce2abf0387d83977a9691ca1fbc6f12
BLAKE2b-256 81f649486d1855d8ed540303d5dabc4a583266b14ea6b9ef4325e4572a748a7e

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.5.2.9.dev202302211676877868-cp38-cp38-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.5.2.9.dev202302211676877868-cp38-cp38-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 3eb9cd078a0397e9ca981b973dfc2d1c8d550e9977f3fe7461267a2e7e81d35d
MD5 9b4b72942ef68107064ad4461ea5ede0
BLAKE2b-256 513ce9d4ab98e61d9938e5a711fcd50e35982931c9074e797b49c87394c43964

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.5.2.9.dev202302211676877868-cp38-cp38-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.5.2.9.dev202302211676877868-cp38-cp38-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 58d8c2867202d79a8239adbb462389d428f14bc023c8d05b496829ce19578575
MD5 6755559669acc79a300f550fedc83131
BLAKE2b-256 2b8ea254beb276c3cb5779285b179ac795e895de81db63ada2d54bb37ab3e692

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.5.2.9.dev202302211676877868-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.5.2.9.dev202302211676877868-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 da89e7378517c6a06429b6309e40374bfecd48b0d3687b3d07c37b85af7e05ad
MD5 78f543f75562c396999889814f718c7d
BLAKE2b-256 790c51ca430964cc874a25763c9d967a25bbd2bf97fa9a755d4e164a7ce1a36a

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.5.2.9.dev202302211676877868-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.5.2.9.dev202302211676877868-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 6c512581341007f8d9f2084d624df3fbe859c333d8652ed554f4e9788be0caaa
MD5 c060493980815feb8d74c3a83c7ba614
BLAKE2b-256 2701672080200a2c89bcb5945067efd47f9ddb0b7c0ecf90f7c81675ccdcf04d

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page