Skip to main content

Bayesian networks and other Probabilistic Graphical Models.

Project description

Description: pyAgrum is a scientific C++ and Python library dedicated to Bayesian Networks and other Probabilistic Graphical Models. It provides a high-level interface to the part of the C++ aGrUM library allowing to create, model, learn, use, calculate with and embed Bayesian Networks and other graphical models. Some specific (python and C++) codes are added in order to simplify and extend the aGrUM API. The module is mainly generated by the SWIG interface generator.

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

pyAgrum_nightly-1.6.1.9.dev202302261677346080-cp311-cp311-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.11 Windows x86-64

pyAgrum_nightly-1.6.1.9.dev202302261677346080-cp311-cp311-macosx_11_0_arm64.whl (4.0 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

pyAgrum_nightly-1.6.1.9.dev202302261677346080-cp311-cp311-macosx_10_9_x86_64.whl (4.4 MB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

pyAgrum_nightly-1.6.1.9.dev202302261677346080-cp310-cp310-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.10 Windows x86-64

pyAgrum_nightly-1.6.1.9.dev202302261677346080-cp310-cp310-macosx_11_0_arm64.whl (4.0 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

pyAgrum_nightly-1.6.1.9.dev202302261677346080-cp310-cp310-macosx_10_9_x86_64.whl (4.4 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

pyAgrum_nightly-1.6.1.9.dev202302261677346080-cp39-cp39-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.9 Windows x86-64

pyAgrum_nightly-1.6.1.9.dev202302261677346080-cp39-cp39-macosx_11_0_arm64.whl (4.0 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

pyAgrum_nightly-1.6.1.9.dev202302261677346080-cp39-cp39-macosx_10_9_x86_64.whl (4.4 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

pyAgrum_nightly-1.6.1.9.dev202302261677346080-cp38-cp38-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.8 Windows x86-64

pyAgrum_nightly-1.6.1.9.dev202302261677346080-cp38-cp38-macosx_11_0_arm64.whl (4.0 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

pyAgrum_nightly-1.6.1.9.dev202302261677346080-cp38-cp38-macosx_10_9_x86_64.whl (4.4 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

File details

Details for the file pyAgrum_nightly-1.6.1.9.dev202302261677346080-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.6.1.9.dev202302261677346080-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 457613f411bbd274ca902bdcccac5986113bdee1e3642048ea23b2402cc42216
MD5 525e4ccafec1cb12f1fa80c6fe4fce91
BLAKE2b-256 3bb9988a1374b4d9a54f4137915ef461c0d823def7c029b47eb5da7f608650a1

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.6.1.9.dev202302261677346080-cp311-cp311-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.6.1.9.dev202302261677346080-cp311-cp311-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 334bc47767eef11a272a706ae139332d61d3a85f0696404d684b521ef59fbd18
MD5 2e4260029860c0769520343748349dde
BLAKE2b-256 87b7f3add2d18abe5401e356f84b811a5251510b690c434b5da246f2bfdb8965

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.6.1.9.dev202302261677346080-cp311-cp311-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.6.1.9.dev202302261677346080-cp311-cp311-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 d811ed0ea5f0f4350a17bbab220041bd8644e94e2c47a8377085464cd83827ad
MD5 2488884eb74459e2bf6d2013543173a1
BLAKE2b-256 5be7162e2c6e05bb24009ffac6e9565f2e1fcd9b9e32ae1b730a6f7439e3149c

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.6.1.9.dev202302261677346080-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.6.1.9.dev202302261677346080-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 8943e7fce1ec5175d5732f78b923be609b62dc74fbeefa22ad77efbdc5e0bd41
MD5 8d0af9aed86228e59b900114defb4979
BLAKE2b-256 0b4ab7784ef74a7989806d021cb79943706edd51b9b85039a7bde17d31cfa654

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.6.1.9.dev202302261677346080-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.6.1.9.dev202302261677346080-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 daffd9951c21ea4a95e7f44e4d2f92f87815f293fa73bb835ea4ae44174a71fd
MD5 c734c0e22cbf4974af05ca23dcba3a1d
BLAKE2b-256 f318d17a212ab9d35a5410ad70c60936d380e6a4af361c7758c9726402f6309b

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.6.1.9.dev202302261677346080-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.6.1.9.dev202302261677346080-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 f7d2f7d62b86ac480e402bfa9134d89795233889e63db969ee000e51c9210dca
MD5 497e151d1b5c9cc57b946d802e2c4f59
BLAKE2b-256 d4fa8b9a13d2272debe94770955dc13764d3b1d2536168227259dcd69ec01d69

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.6.1.9.dev202302261677346080-cp310-cp310-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.6.1.9.dev202302261677346080-cp310-cp310-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 7df9e17c5808aca60210e701396d5b477a0a12f3e5f9ddb55a0761670876c2cd
MD5 89421cc41d81df6b18efaf4731a8eb38
BLAKE2b-256 8536c670320c9eb508ea92293d53623c1aba0a62fd7b1d311493393533c09fb0

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.6.1.9.dev202302261677346080-cp310-cp310-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.6.1.9.dev202302261677346080-cp310-cp310-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 ac85b013cdebdde8de4ec7d4f14208f2ac6437e058e7e837687a6d214475d8f1
MD5 21bf548fbf84a897d8773df1257515e0
BLAKE2b-256 3da96d36fb730a61227d32ac0ec623baed5bfb02b0f5466565ea3c6ad41acb54

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.6.1.9.dev202302261677346080-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.6.1.9.dev202302261677346080-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 5d32b49dce777351e0b3dd268ba0dc6c4863fcd7c9d3054b554cc72e6f2681d7
MD5 00140d2b38fba64e25a80a508093161d
BLAKE2b-256 f9c6980bf9bead3cee9cd83210516fa719c7c9f49e8232b3dad2052fbfd0a4f6

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.6.1.9.dev202302261677346080-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.6.1.9.dev202302261677346080-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 695f97f56c0abc14fd343d7f5d4d68078a58c899efc1833e0e0fbe1f9f708e95
MD5 238380c5b9eb654bf0a078b6017278bd
BLAKE2b-256 9f945cb1f32295b0d5ac5fa38fe42b16a7438bc57ec84b8b38532aa54d38ed1d

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.6.1.9.dev202302261677346080-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.6.1.9.dev202302261677346080-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 42a82acb745667b40c8d13345a41946fc32c1596c325fe62ac9770994ada922f
MD5 9bb336a1d973b4bdd94530873f2fde8c
BLAKE2b-256 c33d140ace3e537deaf39ef410ed6602b3dfff9aea64942d1da20412f2d6d59c

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.6.1.9.dev202302261677346080-cp39-cp39-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.6.1.9.dev202302261677346080-cp39-cp39-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 0ad5c774482d35f116cc322c7e7de4f63aa2ed9a2409f14ea655e54eb334a8ac
MD5 7b464d340f41d1d63301cd40288e7a7f
BLAKE2b-256 3fd4f9abd8806ecff96b837fe4a24670c4db6ccd23fba761643e42d8b0916a44

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.6.1.9.dev202302261677346080-cp39-cp39-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.6.1.9.dev202302261677346080-cp39-cp39-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 38bff60878785d8d48e2644cf6953559abc7a97b9e3ecf506e1f941c90a8cdd9
MD5 6110e04481160eb3c6d416d909b71281
BLAKE2b-256 c640a08d6781b6236b3294b0c95fc40ac0baeff51b75ec743f4996df963952e7

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.6.1.9.dev202302261677346080-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.6.1.9.dev202302261677346080-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 c8075e290b65a93200f2e22d6943ae8169992dd32d1319d9d645857292edb344
MD5 7aa16cb63547d47f397e22f0bb7ed390
BLAKE2b-256 55537fc90ea4f6b852b23a5d4acddba58fbb7e353bf352dd36d97cd47141c56f

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.6.1.9.dev202302261677346080-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.6.1.9.dev202302261677346080-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 341ce3eb7130b26385ca418cd56d31c415eca96188a98b54031e499739daa8f3
MD5 634672bb38850cf0648c4fb308de57bd
BLAKE2b-256 31e526b0e0346b82449effbd2990ae548cf6733c78f966a4c753ff8ee4c3babd

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.6.1.9.dev202302261677346080-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.6.1.9.dev202302261677346080-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 be02761822420c90582fa941241b0fde0f67bc7f24600e87010a8e6ea29e7875
MD5 e5cfd1f26724ef714a2953bc905a5ba8
BLAKE2b-256 8338781decc9e46e8c9197362eebd53aea5e181b39a39ecb1c4d3546144f2d36

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.6.1.9.dev202302261677346080-cp38-cp38-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.6.1.9.dev202302261677346080-cp38-cp38-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 33dd35c8f621531873aa8186c3c6639a2f955dad4b944697426ede279a426692
MD5 e39c56fee39dded59a4b8b8c63a99b69
BLAKE2b-256 61e04e75f45bf138c6bb9ee7ed708cd520e1b85cc431271498cac662bfa50aa3

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.6.1.9.dev202302261677346080-cp38-cp38-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.6.1.9.dev202302261677346080-cp38-cp38-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 d3aa31a8ee9b98dbb1e0a9344ed05d57574aff95cb98d11f286ad2fbf0f9124d
MD5 7ada1dbfefb6ddf12df485078088069e
BLAKE2b-256 6e61bd61d7f09cbdffccede6eb2b53636416a5e57c3b27a6874c75239d3c6422

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.6.1.9.dev202302261677346080-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.6.1.9.dev202302261677346080-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 4545c33544919cb7ee4ff31ed1c9bfefe8f67686a20597d17c7fc1e3f19ecaf0
MD5 5f9ac11de13216b7c854a978af4eb196
BLAKE2b-256 edd8d86454948b34c896de8b0dab2e148ba5ec1806881fd61e257d71ee5925d8

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.6.1.9.dev202302261677346080-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.6.1.9.dev202302261677346080-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 aa12feb477bc26964732b77c310fc7c9f96e9e8a1b0bb1aeabfac42c50ded803
MD5 f107aadce82d8ca8a614212a614e3d0e
BLAKE2b-256 f99678a0d45029d84f82794fee546af6a7892813acae553af9b5cabc71cc67cf

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page