Skip to main content

Bayesian networks and other Probabilistic Graphical Models.

Project description

Description: pyAgrum is a scientific C++ and Python library dedicated to Bayesian Networks and other Probabilistic Graphical Models. It provides a high-level interface to the part of the C++ aGrUM library allowing to create, model, learn, use, calculate with and embed Bayesian Networks and other graphical models. Some specific (python and C++) codes are added in order to simplify and extend the aGrUM API. The module is mainly generated by the SWIG interface generator.

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

pyAgrum_nightly-1.6.1.9.dev202303051677720715-cp311-cp311-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.11 Windows x86-64

pyAgrum_nightly-1.6.1.9.dev202303051677720715-cp311-cp311-macosx_11_0_arm64.whl (4.0 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

pyAgrum_nightly-1.6.1.9.dev202303051677720715-cp311-cp311-macosx_10_9_x86_64.whl (4.4 MB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

pyAgrum_nightly-1.6.1.9.dev202303051677720715-cp310-cp310-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.10 Windows x86-64

pyAgrum_nightly-1.6.1.9.dev202303051677720715-cp310-cp310-macosx_11_0_arm64.whl (4.0 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

pyAgrum_nightly-1.6.1.9.dev202303051677720715-cp310-cp310-macosx_10_9_x86_64.whl (4.4 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

pyAgrum_nightly-1.6.1.9.dev202303051677720715-cp39-cp39-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.9 Windows x86-64

pyAgrum_nightly-1.6.1.9.dev202303051677720715-cp39-cp39-macosx_11_0_arm64.whl (4.0 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

pyAgrum_nightly-1.6.1.9.dev202303051677720715-cp39-cp39-macosx_10_9_x86_64.whl (4.4 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

pyAgrum_nightly-1.6.1.9.dev202303051677720715-cp38-cp38-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.8 Windows x86-64

pyAgrum_nightly-1.6.1.9.dev202303051677720715-cp38-cp38-macosx_11_0_arm64.whl (4.0 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

pyAgrum_nightly-1.6.1.9.dev202303051677720715-cp38-cp38-macosx_10_9_x86_64.whl (4.4 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

File details

Details for the file pyAgrum_nightly-1.6.1.9.dev202303051677720715-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.6.1.9.dev202303051677720715-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 3fdcd98eba768d4be50b36f4f1bcc3f202205d151251406716892ceb959d10b0
MD5 ac58bb3e9d5ad68fc8eb453e67b5b741
BLAKE2b-256 24895c88790c2cbd9621c19105ec5fa43c67a543b479bb36f3f187d37732a9a6

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.6.1.9.dev202303051677720715-cp311-cp311-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.6.1.9.dev202303051677720715-cp311-cp311-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 070ccd2749afd249b62c4c2c9f0dd03ddd0901574d2e3431198e3e161cc8094d
MD5 e8c79af983b734d61036258862d3de9c
BLAKE2b-256 69a67e382d14e25dc5cc6d989285f909f93bb7b2d31f8b7e62471b990fd980d9

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.6.1.9.dev202303051677720715-cp311-cp311-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.6.1.9.dev202303051677720715-cp311-cp311-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 b45811851ad5667c6a0f65a61fa4a1a8870ee53e18fd9cf120dce5af813bc741
MD5 3d6d1bbde5e6651b7df26ce351547c5a
BLAKE2b-256 41256d1087ec28389257253c00fe742749bfc8b589fcfaa98ff5b8a8ffc75245

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.6.1.9.dev202303051677720715-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.6.1.9.dev202303051677720715-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 858700e055c861660e37bb9280611f9b8b057ba5ed5b1271ee59746223fedba2
MD5 de41f9264db5d5928efb24f9e4baf6f5
BLAKE2b-256 154cfe39c45f73ee7c72703d8556396662f60e8a6db8da25aa678dff71ffd8b1

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.6.1.9.dev202303051677720715-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.6.1.9.dev202303051677720715-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 aa8133ee3b500b338a2c08388f463581c0843ddff36374f8b08e3d760e3f47ed
MD5 a2658d6c75f25f81795c02e94a872373
BLAKE2b-256 15c917f11065e445edc9d7fd7ff3796ac63ff48e0455ad004f313c802e305ce2

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.6.1.9.dev202303051677720715-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.6.1.9.dev202303051677720715-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 286198a6a1363dfb4b343a7c332ff3354cd225ea0dab0adb0d5f51a07473323e
MD5 5c706af56c9eabc41293b2ff818f1ccf
BLAKE2b-256 27bd893545315521e2ad094d426d1c53ef6219ad97554d612e153b3414442758

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.6.1.9.dev202303051677720715-cp310-cp310-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.6.1.9.dev202303051677720715-cp310-cp310-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 db0ad443229bbbbf4aefe6d5cdb34f42f31a6ce4427eefd329cc05d8f90917a8
MD5 dfcfab81e17dd02fdd84607586d120ff
BLAKE2b-256 0ef1562803187df26d77a7f69e61c3ba633e231eadce8fc9a25f22704350129c

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.6.1.9.dev202303051677720715-cp310-cp310-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.6.1.9.dev202303051677720715-cp310-cp310-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 c1f86c8f633bd607b2616f71a7562fed06ab82a55b42e6c4e9d9df7ed346cf2c
MD5 268915273b41ed93fb732d21e3faadb7
BLAKE2b-256 d50c2ad0d0d3dff3a4b6f74a9f195382538aa1dee3dde22a3fe860c879bc52d5

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.6.1.9.dev202303051677720715-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.6.1.9.dev202303051677720715-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 99399e55b0051b0ed6b14aa213c944cd6b97a5e14672018bdf8ab8289fda5a3d
MD5 79ad09322984ab937e13f86621f2accb
BLAKE2b-256 25257450944725bdd8eb46c3eec481234f39aa9a482f56138b65af63e7be1dff

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.6.1.9.dev202303051677720715-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.6.1.9.dev202303051677720715-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 526eb3f06c17d3a09fc0c934f65225785113f20e32d310a6077e3b6a23ff452f
MD5 5bff56ae27c4c2717b7671443efd5040
BLAKE2b-256 b90627a89ab2f89b221f5866a34a9862a7cd2c593d8d4ef22f0802f4f0d81e4f

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.6.1.9.dev202303051677720715-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.6.1.9.dev202303051677720715-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 63dc326a96d4a903a5585f0c4964892756c78f853fa413b33dab78ee5c392980
MD5 5841a77be09f72e6a91bafe71cfdbc2f
BLAKE2b-256 12e471ca86351472224dfe9d78af67b0bea7bceca3920b6c7a8f7dbce9bd0b1c

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.6.1.9.dev202303051677720715-cp39-cp39-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.6.1.9.dev202303051677720715-cp39-cp39-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 827ecfc137242c3bc44e398c0df02d3d117fb68026066485adbce41cffd0118c
MD5 15e00b934c1b24f08595fc7fed87e6dc
BLAKE2b-256 68288003286dc6d8d270f44478984ca66a61c9c4534be36c97609e09a2a60bbf

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.6.1.9.dev202303051677720715-cp39-cp39-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.6.1.9.dev202303051677720715-cp39-cp39-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 0a4c334668fd13b03d6ebfd5e7f288c9b32d13aaa8c99b2b517a4893317f1d94
MD5 44ec0c21b5ad3397a03c690f365a036d
BLAKE2b-256 0438097c17a479de2307f6d9221d6836f9602ed384fa0e3fd65d47508371fa7e

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.6.1.9.dev202303051677720715-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.6.1.9.dev202303051677720715-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 e51372f1882ea37e93ba86b87f566a653a48e55edfa7366fdf65a29bcdbc0134
MD5 78048b6736d3b8666e9221b0473b264d
BLAKE2b-256 39fef17d24417cb502b70dcfe5a415eaac532fe5b34f20c08385540b2fe01002

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.6.1.9.dev202303051677720715-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.6.1.9.dev202303051677720715-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 7d924a40555cb87080a6f2cfdd92671c29a47a831baa46e7d7415bd6a57e81d5
MD5 d81972c2dd22d4a35c08a78d6de3bd74
BLAKE2b-256 04af6bfbfb9371df0752721e3d0d53fd7502f6e4b5d1b71b6a001267d2be2452

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.6.1.9.dev202303051677720715-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.6.1.9.dev202303051677720715-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 ddeda9384c359d2b7c48a8e317081750c59530026ec0adbda268e106f1d1389f
MD5 f155570fd0a02b8a561278cff2001658
BLAKE2b-256 21f80ae920239ba6e065827470bc2bb40b4e60826617819dec7a585bdac25264

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.6.1.9.dev202303051677720715-cp38-cp38-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.6.1.9.dev202303051677720715-cp38-cp38-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 0f8cef887c202088e7d4144da650020e4f1ba81089fb3de63ef1e329db814f8e
MD5 9a899f28aebc2973e5ee18109f8dfd58
BLAKE2b-256 e3fe5dee4de896942ea2458ff534ff70865b4f48959d7bc468343aac172fa5da

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.6.1.9.dev202303051677720715-cp38-cp38-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.6.1.9.dev202303051677720715-cp38-cp38-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 d3844128f689e502250e747910856e0e87d93de831ce30c55d260df973787174
MD5 68622ed8d05493cf00ab5526c14bf1e8
BLAKE2b-256 2400edcb85bc896c94455a2d753c25d4382f640d35d2613beedab64ca6346f7c

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.6.1.9.dev202303051677720715-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.6.1.9.dev202303051677720715-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 190ac5773d9e20b0afa6dc75877bbbbaa1465e335f2766ed07b4067db66f75fa
MD5 3265c90e43e65996a2c8d552dab972a2
BLAKE2b-256 962704d3a358e8ccf0816faf0eca36967d7dfedd021517d74028d14dfb8afdc6

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.6.1.9.dev202303051677720715-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.6.1.9.dev202303051677720715-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 075c43b6732e9cf2f664fcf7690765e12e914d2ffa8c2b790b2413f407bfa687
MD5 dda5684ec5e0c7bb1dcced5b6a9e2e95
BLAKE2b-256 451f617b6a41d6312d6dcec39264249f5dab31e2c98f7b89642fa7f8bd10c9a6

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page