Skip to main content

Bayesian networks and other Probabilistic Graphical Models.

Project description

Description: pyAgrum is a scientific C++ and Python library dedicated to Bayesian Networks and other Probabilistic Graphical Models. It provides a high-level interface to the part of the C++ aGrUM library allowing to create, model, learn, use, calculate with and embed Bayesian Networks and other graphical models. Some specific (python and C++) codes are added in order to simplify and extend the aGrUM API. The module is mainly generated by the SWIG interface generator.

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

pyAgrum_nightly-1.6.1.9.dev202303061678005709-cp311-cp311-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.11 Windows x86-64

pyAgrum_nightly-1.6.1.9.dev202303061678005709-cp311-cp311-macosx_11_0_arm64.whl (4.0 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

pyAgrum_nightly-1.6.1.9.dev202303061678005709-cp311-cp311-macosx_10_9_x86_64.whl (4.4 MB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

pyAgrum_nightly-1.6.1.9.dev202303061678005709-cp310-cp310-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.10 Windows x86-64

pyAgrum_nightly-1.6.1.9.dev202303061678005709-cp310-cp310-macosx_11_0_arm64.whl (4.0 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

pyAgrum_nightly-1.6.1.9.dev202303061678005709-cp310-cp310-macosx_10_9_x86_64.whl (4.4 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

pyAgrum_nightly-1.6.1.9.dev202303061678005709-cp39-cp39-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.9 Windows x86-64

pyAgrum_nightly-1.6.1.9.dev202303061678005709-cp39-cp39-macosx_11_0_arm64.whl (4.0 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

pyAgrum_nightly-1.6.1.9.dev202303061678005709-cp39-cp39-macosx_10_9_x86_64.whl (4.4 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

pyAgrum_nightly-1.6.1.9.dev202303061678005709-cp38-cp38-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.8 Windows x86-64

pyAgrum_nightly-1.6.1.9.dev202303061678005709-cp38-cp38-macosx_11_0_arm64.whl (4.0 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

pyAgrum_nightly-1.6.1.9.dev202303061678005709-cp38-cp38-macosx_10_9_x86_64.whl (4.4 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

File details

Details for the file pyAgrum_nightly-1.6.1.9.dev202303061678005709-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.6.1.9.dev202303061678005709-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 ab997248faf0ba596ec1cad5872eb6309bd0724854d54ada66e72d0366b01bf2
MD5 9f94992f1c9614724b52cf6b5d0a876a
BLAKE2b-256 5999954660fc5f0126741ccca42670d61c61ec67ac8a0c579c4ae26f1a01b341

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.6.1.9.dev202303061678005709-cp311-cp311-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.6.1.9.dev202303061678005709-cp311-cp311-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 0aa9bc1a73b3fb3548ac6047ab5add22dd6a61bdd47bb6e6867ae0e939e8707f
MD5 6d772e509da651bfb4af86b3cecf6d7b
BLAKE2b-256 abda2bd45ab9cbe2ed4f2192c39f26197c133af26a4306b172a8af643a372f2c

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.6.1.9.dev202303061678005709-cp311-cp311-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.6.1.9.dev202303061678005709-cp311-cp311-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 9e851030ed9793d932474f23937ae5f259aedf961cc6e52742f1b9ecda26c37a
MD5 927142728da895d5455c372652b08931
BLAKE2b-256 5c167597e94ee121ca2b529e6a050fff6b6eae3b99a9589e99b59c036081d51c

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.6.1.9.dev202303061678005709-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.6.1.9.dev202303061678005709-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 25d0e75d39c8c8b68f2494f661d731f9d5713c234960363e0fa475df78467a38
MD5 4f1a04c5d477a990ae41cfc615499767
BLAKE2b-256 f4b4215f1e992d9d9ab395039408f76e48e8ac04bb2ee581f79c9fbb9ebfe32c

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.6.1.9.dev202303061678005709-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.6.1.9.dev202303061678005709-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 7424e9e2d081f42265e4d5ea2f291fca142486df610c4b6d5dac9ff7c8b00f36
MD5 d5d7b24e78fd6695dad915b9f76c5c42
BLAKE2b-256 7a3e4005ffb92a75dfa2eafeea141a0ceb99753ad901d1c0eaf5ed8fe1156585

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.6.1.9.dev202303061678005709-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.6.1.9.dev202303061678005709-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 2381f96ae33ddfbaa686d0a0859efe654abcb0de9f30906a4887cc6288ad6eb5
MD5 918282cd31904e296608f0a270cdb797
BLAKE2b-256 c8f307c73c6d7e3e6bacb75cb4db91121a37e4cdbea6cea8ceb2cb4812019ce8

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.6.1.9.dev202303061678005709-cp310-cp310-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.6.1.9.dev202303061678005709-cp310-cp310-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 e709ee7a496e4ea2ca0f13b82f0a045146400519fc391e4df84112953463f75b
MD5 b748d0ee1a6927894e634449709d1af9
BLAKE2b-256 3be185c3619b4c5166e38857384b513d43194aa7aad5b95c2db6be0a648b8aa7

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.6.1.9.dev202303061678005709-cp310-cp310-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.6.1.9.dev202303061678005709-cp310-cp310-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 b2021bba667b2ffc5fae2347e0cc3459320bb8db830a1fb4f9c3c2e2f0ba99b1
MD5 09582798f75fb9d074739b5c35b69c33
BLAKE2b-256 04333b6b5baa0dd2cafc56aa2ab48c98869bfedb20654627a46ce12f0f92d0de

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.6.1.9.dev202303061678005709-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.6.1.9.dev202303061678005709-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 7d6de249ce74d571b1571586f9c76af5b96731967ba410acbd3f527516d6ce16
MD5 047eae18aac01024bd16b63cbd457714
BLAKE2b-256 25ad58ec455f86eaac8ff78fca3f591482dcf3e9bc71e4fe54d75a3832a00ba7

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.6.1.9.dev202303061678005709-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.6.1.9.dev202303061678005709-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 7303c0ac1964f4ef471af4039ff1d60fda10f6f7fbae17f59a4a2cca79f1cd9d
MD5 0c9b2641103cf71a4879a5786ee4e81f
BLAKE2b-256 3851da3b2403236bc9c6738d7453c3e8227a460be195c4408d854e17fc08d9c5

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.6.1.9.dev202303061678005709-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.6.1.9.dev202303061678005709-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 c62cfaa88dfa8f49bf3c6a2598ed2659999c0416f2af8f111d9acbed30fff918
MD5 f20610a7c93d38ad12d771cfeed2bd43
BLAKE2b-256 a48cf68b1aa2df086fe74c81cfb79d707d230cd1f2cfd031ba3ac3ce594d50e0

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.6.1.9.dev202303061678005709-cp39-cp39-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.6.1.9.dev202303061678005709-cp39-cp39-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 ee2c28c10891e6b059edcbb505df33378110e57e3fc506ac663911318b97887e
MD5 1b6883599e7b5b3d048f7db3bec3f560
BLAKE2b-256 47129194c7dfd1dc019352a62eeaf689265d1b17d4ba24963c2c4b1bdeb70665

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.6.1.9.dev202303061678005709-cp39-cp39-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.6.1.9.dev202303061678005709-cp39-cp39-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 e3440678bbb476a4b79bcb77d1d65ea539f571405cc72ca8c251db5aa85afaf4
MD5 67126639666f1aac140a824e1a65e71a
BLAKE2b-256 fd70423aea036ced0f5f5133a413e5134e3bb31b9d62032afa8793417de5b1f8

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.6.1.9.dev202303061678005709-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.6.1.9.dev202303061678005709-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 81df0741bd8e632ae4fd25ece9579f4131db4d3df5633ff6dbbd295c621ce4e0
MD5 3fe1fd397075b8dc2f285874e6a1f8d5
BLAKE2b-256 6b05a7f987ce0502e8e423baa892d5234d4d88e3b5f10e30a35338d69bdc6589

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.6.1.9.dev202303061678005709-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.6.1.9.dev202303061678005709-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 dd2a0cc63a629cef4890dc4a7316816f7a8af217032028c41c57737ab65a5c47
MD5 ddaa02d35054c857628a893e6d9c16b0
BLAKE2b-256 5c995185fbcd50726f6375e6b443e6d85722a66620e4d1ae6d3211d64c1525a4

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.6.1.9.dev202303061678005709-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.6.1.9.dev202303061678005709-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 47e3db4a6d074c9ab978d5fb9ba1859d2863ff654227a3fe0dbc03e5469fe15b
MD5 12ab3ccfcb0af047e338354db16ee3de
BLAKE2b-256 b21c53508808fc859af68f66100c4aa70af92c122fefe218c131f203db7fe69a

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.6.1.9.dev202303061678005709-cp38-cp38-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.6.1.9.dev202303061678005709-cp38-cp38-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 05bf79333aa9eaa03e01ac92f753cb1523c3956789e85af0ed70c37c8715cdc0
MD5 255cf4578d816f510fa4b82ff35843d4
BLAKE2b-256 acffb8ac8552418fe88ec883b65dc6908c12bae6dd3ec352cbd142e545304d05

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.6.1.9.dev202303061678005709-cp38-cp38-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.6.1.9.dev202303061678005709-cp38-cp38-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 2ea65e3a414d960f596124bda31e7ff3bb4e9e4872e0307431782e886ca7b2cb
MD5 bd6b14a56450e9062a6bf2654358faa4
BLAKE2b-256 b988e124b780e76f0d2cc5c6e3e90caecf480a38dcb75281f610e93ded21159d

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.6.1.9.dev202303061678005709-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.6.1.9.dev202303061678005709-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 200f70cf1d95225f03e8c24f972a3e63d2d1660249f139330374d378e13302a1
MD5 3f5c1986447f443c2d19ebdb7fb8dbf2
BLAKE2b-256 85f661a01194adf7fb4111c00130ba5808121cb9a46cff037d56bb787790931d

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.6.1.9.dev202303061678005709-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.6.1.9.dev202303061678005709-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 65af39b990bf494c5b49a3a390f0339cc20d7c18be8dfba1626127ac92d4f308
MD5 f8c62ed3b5d3d05fa28e175d14c53036
BLAKE2b-256 b4747f9f2d395ac474189b081caf7b9cc716d1a00dae6aeba493cb61ec09543b

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page