Skip to main content

Bayesian networks and other Probabilistic Graphical Models.

Project description

Description: pyAgrum is a scientific C++ and Python library dedicated to Bayesian Networks and other Probabilistic Graphical Models. It provides a high-level interface to the part of the C++ aGrUM library allowing to create, model, learn, use, calculate with and embed Bayesian Networks and other graphical models. Some specific (python and C++) codes are added in order to simplify and extend the aGrUM API. The module is mainly generated by the SWIG interface generator.

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

pyAgrum_nightly-1.6.1.9.dev202303101678005709-cp311-cp311-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.11 Windows x86-64

pyAgrum_nightly-1.6.1.9.dev202303101678005709-cp311-cp311-macosx_11_0_arm64.whl (4.0 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

pyAgrum_nightly-1.6.1.9.dev202303101678005709-cp311-cp311-macosx_10_9_x86_64.whl (4.4 MB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

pyAgrum_nightly-1.6.1.9.dev202303101678005709-cp310-cp310-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.10 Windows x86-64

pyAgrum_nightly-1.6.1.9.dev202303101678005709-cp310-cp310-macosx_11_0_arm64.whl (4.0 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

pyAgrum_nightly-1.6.1.9.dev202303101678005709-cp310-cp310-macosx_10_9_x86_64.whl (4.4 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

pyAgrum_nightly-1.6.1.9.dev202303101678005709-cp39-cp39-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.9 Windows x86-64

pyAgrum_nightly-1.6.1.9.dev202303101678005709-cp39-cp39-macosx_11_0_arm64.whl (4.0 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

pyAgrum_nightly-1.6.1.9.dev202303101678005709-cp39-cp39-macosx_10_9_x86_64.whl (4.4 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

pyAgrum_nightly-1.6.1.9.dev202303101678005709-cp38-cp38-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.8 Windows x86-64

pyAgrum_nightly-1.6.1.9.dev202303101678005709-cp38-cp38-macosx_11_0_arm64.whl (4.0 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

pyAgrum_nightly-1.6.1.9.dev202303101678005709-cp38-cp38-macosx_10_9_x86_64.whl (4.4 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

File details

Details for the file pyAgrum_nightly-1.6.1.9.dev202303101678005709-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.6.1.9.dev202303101678005709-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 7def7063f48ace6f8103535d3ab535ae693396f624e31c11c08cd9da896ba7b2
MD5 ed63c2081187ecb579cb58e79e5dae96
BLAKE2b-256 d5cbb8e2e7315bbf5e8f77c3d5c5dee8f1fcacc0b0020b38b09e3fd8b4aee503

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.6.1.9.dev202303101678005709-cp311-cp311-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.6.1.9.dev202303101678005709-cp311-cp311-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 3418092996e98a31bebaa60e2a3d85b33cd1c9c15575db12f6709058787460cc
MD5 e8c018cde5cb9218c93186801603ba2c
BLAKE2b-256 078a111ecbc9b6ca4ca5c61ad6fb00106abbc7a5f2c40536489fba9d8e48288e

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.6.1.9.dev202303101678005709-cp311-cp311-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.6.1.9.dev202303101678005709-cp311-cp311-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 a84a47ee218783a4f10f7cc513e6c7fd3242ae65319b5724c09b583e3e3129a7
MD5 bd328afc720644019e9ea8326fb29301
BLAKE2b-256 351be05e58daf6f631608bc4157b9c63f3edf67fe95275c6bc90fe7a21c750eb

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.6.1.9.dev202303101678005709-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.6.1.9.dev202303101678005709-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 d55905fc58f00012253e191ead840647b3cef318e976204961b9850a1dbe3592
MD5 aeef6e263e376ed77110425059056e21
BLAKE2b-256 fc3f0875781cbfcf39d66e335e31234946f9dcb3441832355b4d7ec73277678b

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.6.1.9.dev202303101678005709-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.6.1.9.dev202303101678005709-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 c03e0e901d33fb2ddf692fca4afbce0c5809303bbdde5fff904e271ed5c179a1
MD5 276d5e78b37d1c504a84dbc5eff996f0
BLAKE2b-256 49e30399a7782d60c747a905d541c0d645840e1a4bc92babae3d894009532595

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.6.1.9.dev202303101678005709-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.6.1.9.dev202303101678005709-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 274ca2fcff515fb95946dbf46247f3a87873f5dd26aa984f5220235a831f1c85
MD5 8c03d51e60403e45c6f9a062a10cad57
BLAKE2b-256 c0799a2543399cf48424590edda6d53228e85b3d434601b009c98729ea82e434

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.6.1.9.dev202303101678005709-cp310-cp310-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.6.1.9.dev202303101678005709-cp310-cp310-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 c7d2fa8acbb986a79be8859373d59ea1c1600c7036095e09ae84f2110d1ab801
MD5 7b0fed70b753a6ab8d7335cea47f698b
BLAKE2b-256 122e1746692abb92ad80f6adc0cce8400477dde32bb3f1dd87d6d68694a1885d

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.6.1.9.dev202303101678005709-cp310-cp310-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.6.1.9.dev202303101678005709-cp310-cp310-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 b12bb22cabd86106e7dfa2df6c2f5246ed53c3c578318ab01d14e260216fb17e
MD5 0c720d70276035e4b16d9a79a60b86ab
BLAKE2b-256 e056212c3fce7d65d0bf64084aa3dc555fb20e3c5fde982351d149719bc1e60b

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.6.1.9.dev202303101678005709-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.6.1.9.dev202303101678005709-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 7db5c36e4d16a49b0c374a58b3ebce283bd80b8d8b1b806a110ba0108eea9ee7
MD5 12f1fde8f5e02a281a2ea91af2884e8b
BLAKE2b-256 7ad2ed23dbec64c191b51aa31996a8b81b1347c2d750c379a36a9468faf1c71a

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.6.1.9.dev202303101678005709-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.6.1.9.dev202303101678005709-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 2bccfd2f0c54974333c5147e7efbf0fa3c40ddcb3085c61ea5af3df8fb81c48c
MD5 7806e4d3821039c3439aaa59d2b962c7
BLAKE2b-256 ef9280cc033bf4024b3e1772184e287539b04f3800a415beac8b939996615d19

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.6.1.9.dev202303101678005709-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.6.1.9.dev202303101678005709-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 e6561e618e78e2bbb41f133f2bd7974090e54c7576f1efbcd4b8b2daa53c35ff
MD5 7e6096c1ae7eb56d551f8519940c5f04
BLAKE2b-256 79a49f132a7c3a9161c0b8ebe5513a51b59f56a9af4ea64559652976c9e64238

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.6.1.9.dev202303101678005709-cp39-cp39-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.6.1.9.dev202303101678005709-cp39-cp39-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 2db74682c59e38043b209df0c9400890951d2e94d51a2660f22916e0ef37364a
MD5 269380b5c9022c08e3ef131c98462f72
BLAKE2b-256 aeb345b8889a93a4dbc648f612073d4128a4f6b232fd58f8353837a1efb4ab40

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.6.1.9.dev202303101678005709-cp39-cp39-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.6.1.9.dev202303101678005709-cp39-cp39-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 4a406b6afc977a1e118b454dce01f7995ea5fcd41eff6d0401765fd429c6616e
MD5 4d427a1024fd82804ce3d904c6f34912
BLAKE2b-256 8f3e9236767f1176d24ce8a05eca05ad219bee2f40dab3cb7c0bcfca8463c35f

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.6.1.9.dev202303101678005709-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.6.1.9.dev202303101678005709-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 760dea555c31790336e11aaad24b0d6024795edc8bbd77aa9355b2f89964b37b
MD5 b60f93452bef7c8b5f8947cbe2d39366
BLAKE2b-256 206195be40e10e8e7b49e67b4801b39a5116b6c2f230dbbafe873b7e28a9a914

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.6.1.9.dev202303101678005709-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.6.1.9.dev202303101678005709-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 9c42322104cbb60199794b38e6a438fb9776b38315e57d8194951776a09bd915
MD5 86eaecc928c589b1a5d2c1681231bd3e
BLAKE2b-256 790f4c2ad0f6d12a08c9aeaff0b2b81724b371cc6a3f15c733c66cf6d395c486

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.6.1.9.dev202303101678005709-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.6.1.9.dev202303101678005709-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 4c4f2ed6461b437d4063b9e8add1a436bec3bed5acb56040681b75f9c9d2012c
MD5 c0726839f5bf1522826334c68b23cbc7
BLAKE2b-256 eb07be3f436e4fc423c1228ba8d82dbdaee0a0f49912234fed621df1e0032d07

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.6.1.9.dev202303101678005709-cp38-cp38-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.6.1.9.dev202303101678005709-cp38-cp38-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 3c13ac7cc4a545a21de3b05ef3c884ab21a55dece6186577dc9aeb86233c314d
MD5 d1e4ddcfd19c7375e48c15cbaeea1d99
BLAKE2b-256 ad32469b47f648929bc024c559a869569f75786aac0a368cba6dcadf2a5d91c9

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.6.1.9.dev202303101678005709-cp38-cp38-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.6.1.9.dev202303101678005709-cp38-cp38-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 c39b5e2da1fda24c7252d09872dd68b3655dd55f1fa5d961b309fa7418506059
MD5 fcbd2b4e1b8fc1f817c79063de9e0caf
BLAKE2b-256 63f5eea0b13bf5632f9dc7d3ec154066c8848c290b6ffd38679c0f4ed96737ec

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.6.1.9.dev202303101678005709-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.6.1.9.dev202303101678005709-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 4857f189f3772138240048cf903e0a124eda8a431d31b67b1d1c129c27dbe8e8
MD5 e01dccdd1a5d2b052f9b0578234ae7dd
BLAKE2b-256 6dd0c59e534c4a5e9f9f4e629ce9c4d7e02aebe51429098af943490ea149eec9

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.6.1.9.dev202303101678005709-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.6.1.9.dev202303101678005709-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 861d6b0412b3311229c88c93b6c4a98212b9038d41157bf25cf982ef327a91a7
MD5 c3d3342b21b0f4ff4131c68d6ea5e98d
BLAKE2b-256 95eba697ce2f1ca74754da65085d66fac35abbec06c2b21e84e638f5097cd2e9

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page