Skip to main content

Bayesian networks and other Probabilistic Graphical Models.

Project description

Description: pyAgrum is a scientific C++ and Python library dedicated to Bayesian Networks and other Probabilistic Graphical Models. It provides a high-level interface to the part of the C++ aGrUM library allowing to create, model, learn, use, calculate with and embed Bayesian Networks and other graphical models. Some specific (python and C++) codes are added in order to simplify and extend the aGrUM API. The module is mainly generated by the SWIG interface generator.

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

pyAgrum_nightly-1.6.1.9.dev202303141678005709-cp311-cp311-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.11 Windows x86-64

pyAgrum_nightly-1.6.1.9.dev202303141678005709-cp311-cp311-macosx_11_0_arm64.whl (4.0 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

pyAgrum_nightly-1.6.1.9.dev202303141678005709-cp311-cp311-macosx_10_9_x86_64.whl (4.4 MB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

pyAgrum_nightly-1.6.1.9.dev202303141678005709-cp310-cp310-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.10 Windows x86-64

pyAgrum_nightly-1.6.1.9.dev202303141678005709-cp310-cp310-macosx_11_0_arm64.whl (4.0 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

pyAgrum_nightly-1.6.1.9.dev202303141678005709-cp310-cp310-macosx_10_9_x86_64.whl (4.4 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

pyAgrum_nightly-1.6.1.9.dev202303141678005709-cp39-cp39-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.9 Windows x86-64

pyAgrum_nightly-1.6.1.9.dev202303141678005709-cp39-cp39-macosx_11_0_arm64.whl (4.0 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

pyAgrum_nightly-1.6.1.9.dev202303141678005709-cp39-cp39-macosx_10_9_x86_64.whl (4.4 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

pyAgrum_nightly-1.6.1.9.dev202303141678005709-cp38-cp38-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.8 Windows x86-64

pyAgrum_nightly-1.6.1.9.dev202303141678005709-cp38-cp38-macosx_11_0_arm64.whl (4.0 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

pyAgrum_nightly-1.6.1.9.dev202303141678005709-cp38-cp38-macosx_10_9_x86_64.whl (4.4 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

File details

Details for the file pyAgrum_nightly-1.6.1.9.dev202303141678005709-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.6.1.9.dev202303141678005709-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 ed22a499cd0fa2bcb1e75f7f3805a6400850bd62c91547d26977f8959ddbf04e
MD5 8b75cb9f6d5a3a2bf38135f8a39d0ec8
BLAKE2b-256 62f8be26136d00d6c5312433e378ae66d3f4d866ea338b8b6196fc6f161352d3

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.6.1.9.dev202303141678005709-cp311-cp311-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.6.1.9.dev202303141678005709-cp311-cp311-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 3a7c4da03634f1271d52f66bbb463c5c077cd5f1112af72c8d37eaf14b631629
MD5 68c72a0114d0fa34b62cae82a493da61
BLAKE2b-256 bbcb30a673963018c9d5996c970e6241279231676543037ce27d43c5ee64d12f

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.6.1.9.dev202303141678005709-cp311-cp311-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.6.1.9.dev202303141678005709-cp311-cp311-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 26bbe8681f2131d4fc1255ab83c33fdceb6298a98abe140336b9fec4081b4ad7
MD5 5d6ebbcc56b36c36458ebfee77f4156c
BLAKE2b-256 49de100e2dc964b556a2f249a1d0fffc73bbedf39dc9c005afec43ca4d9e34c4

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.6.1.9.dev202303141678005709-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.6.1.9.dev202303141678005709-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 773ff63b418252b3f4d2274ebb1a2639fbb718000ef58c70d40613206fb3f568
MD5 7a29e386efc4f26030ce2901020432ff
BLAKE2b-256 645e4979f27e64820bb0d799ee32edd065ec9481dfa6d4a7769c4703c558174c

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.6.1.9.dev202303141678005709-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.6.1.9.dev202303141678005709-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 9f40827f31bd9b380f1aff3f4e91ee5219e031e246ef91b0e6272385861d375c
MD5 4801434821435e3c5fc91a06249d33cd
BLAKE2b-256 86fa6757789cf17b23204ec19ff7c5b89bb50b24248fd6a72b91cc7e6c64f2e0

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.6.1.9.dev202303141678005709-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.6.1.9.dev202303141678005709-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 40d3b14de17c935bd4bb0bb1c94402f64d4594e9114cef0c6f570e0a0eac9bd0
MD5 a058880422a2023ea46ed8b08fea102a
BLAKE2b-256 d2a2d6dc51d3bf613694b23466f82efb2bd52cc5db2b63e1a44e00877a1ce113

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.6.1.9.dev202303141678005709-cp310-cp310-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.6.1.9.dev202303141678005709-cp310-cp310-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 dd64757c63dbb85fa814cf2283b3df604fbb6d0b9d9fcd43f6113351e856fc7e
MD5 b7bd02a0a9f8537d51ba966fff355ba7
BLAKE2b-256 12ef4e87f47c87d30bea09455c65b19f1ca80d549f09028757859e786808edc2

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.6.1.9.dev202303141678005709-cp310-cp310-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.6.1.9.dev202303141678005709-cp310-cp310-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 26e08e799823e6008b0a135d1c69359887d0ec66865bc2e69dd5e1c730d0cf88
MD5 c4490a46239a2211fa9534156d96d1a1
BLAKE2b-256 b94ae6fdc4a93acfe1ff1cf49dcb96aad43f1671bad68523c92299ffff9c88f9

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.6.1.9.dev202303141678005709-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.6.1.9.dev202303141678005709-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 c60e149c56910d0b4a6a44b561def1ea9c05f728bc4cb575c377f69e79230cd0
MD5 52de29cd2de5f756c75f9c98d2d0bca6
BLAKE2b-256 79dc5dbea4ca84b6077e5ec8e52dad611c464ede7fcd84877d377a8dd9049882

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.6.1.9.dev202303141678005709-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.6.1.9.dev202303141678005709-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 7adeff9b37c6bfde0da9628af2a71402874dbea2cbae05c7d447d9f79c4f2ed2
MD5 6d6be2c7a291291667adeb34927027e8
BLAKE2b-256 79dde71db00193c6ba4d9a938f5943226a8ffcc59221d53621dffdc85fa49830

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.6.1.9.dev202303141678005709-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.6.1.9.dev202303141678005709-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 243c1b390ff4c4d3b1a1e192203c8ee403f2d90a7142b8b22f93d2556e8cbe95
MD5 b56f893d304c43ad01489b79b2e47407
BLAKE2b-256 2e054a1ecb19da19769b1cc133ee3fdadaf4267d1ca50a0b8dc3e21d5624eccc

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.6.1.9.dev202303141678005709-cp39-cp39-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.6.1.9.dev202303141678005709-cp39-cp39-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 e86f909386d9965bc79115f8f9f4536cad4680ca289c85d499a32e4a9a557f74
MD5 175a50a1b301360d696eb093b1beac79
BLAKE2b-256 b2c4edbc9a3bd9c0030ab450affbc4b82ff88a008eb930444a21d1f333b986a0

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.6.1.9.dev202303141678005709-cp39-cp39-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.6.1.9.dev202303141678005709-cp39-cp39-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 b4281fbc558568d4bad1e7ac003d5336c91df911b68008fe3c284517fbf8078f
MD5 702539afe6aa26579f05f124061f9937
BLAKE2b-256 d5a7298ebeb28cc68c6190e989dc639720fb65383a86a7f1f60596531ac689da

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.6.1.9.dev202303141678005709-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.6.1.9.dev202303141678005709-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 4e78eac1531eceeaaf5f2bcd038806840dd9e475d8d20ff57b08e94c2e46e680
MD5 871823c43ffbebacc97181c0e515305e
BLAKE2b-256 657ae3935656f0b5ff51294996e3cb4286825368b562ec736202359ab380144e

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.6.1.9.dev202303141678005709-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.6.1.9.dev202303141678005709-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 b76070df3e249425300e981a9f9c3ecfa3c829e90feae5df5b43a7fdbc17af1f
MD5 b9ea0c86adab87fc7c046d692aad40f9
BLAKE2b-256 445de6d05aec370260b796736ed4e86fc149da49bdef9faa2076455e8d386616

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.6.1.9.dev202303141678005709-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.6.1.9.dev202303141678005709-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 03b5f8b5d14b70b9599ee4590e40734d6524c10529046448db7515842d540cbf
MD5 163817f1013b67601978e8421cdd9ae1
BLAKE2b-256 0d2fd36b5b94c4f44f0d795cf5d43471236deb5e57914fa1f28e70c7cac613ce

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.6.1.9.dev202303141678005709-cp38-cp38-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.6.1.9.dev202303141678005709-cp38-cp38-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 f493f6803f28211781c15b5e0bcbd8ac90fcd7ac2bf165389f9979c566ce7047
MD5 3b55e128e9656848a80d9165de866254
BLAKE2b-256 7fe2117ccc0ad1994f192f5c2d14c867e3f3704b9b67b53af542c869abdd34aa

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.6.1.9.dev202303141678005709-cp38-cp38-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.6.1.9.dev202303141678005709-cp38-cp38-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 e93cbe923aed4586848e83c2832359d25326449d111a0905ce175a59833bd63c
MD5 a32440563b772937b2699c9243d5dacc
BLAKE2b-256 ba7c8eccd94cd4d9fa88162cc6c067b3839f03d0e98cfb93295dd3aca8c2fce3

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.6.1.9.dev202303141678005709-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.6.1.9.dev202303141678005709-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 ec0ee9c0fa9a1592cefc764fd17757c1ec4da2050a6bff1b342e9f215fe5461b
MD5 16639ceb01e77faf28d2f6babbf3cbd0
BLAKE2b-256 9070bc53989dc61e65479c98d26da5b6c616b21106cf1692f98af3d65f9b6a54

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.6.1.9.dev202303141678005709-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.6.1.9.dev202303141678005709-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 d8cf7f3acd16177ae4fabc1b4308ce008a45407edd130a030d565f7e2c22532a
MD5 9049d490214cd4767a4c6d2543ff5600
BLAKE2b-256 2c457d5093d5720af5381be85b3f7f33aea084c3076744d96152849347418941

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page