Skip to main content

Bayesian networks and other Probabilistic Graphical Models.

Project description

Description: pyAgrum is a scientific C++ and Python library dedicated to Bayesian Networks and other Probabilistic Graphical Models. It provides a high-level interface to the part of the C++ aGrUM library allowing to create, model, learn, use, calculate with and embed Bayesian Networks and other graphical models. Some specific (python and C++) codes are added in order to simplify and extend the aGrUM API. The module is mainly generated by the SWIG interface generator.

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

pyAgrum_nightly-1.6.1.9.dev202303151678005709-cp311-cp311-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.11 Windows x86-64

pyAgrum_nightly-1.6.1.9.dev202303151678005709-cp311-cp311-macosx_11_0_arm64.whl (4.0 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

pyAgrum_nightly-1.6.1.9.dev202303151678005709-cp311-cp311-macosx_10_9_x86_64.whl (4.4 MB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

pyAgrum_nightly-1.6.1.9.dev202303151678005709-cp310-cp310-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.10 Windows x86-64

pyAgrum_nightly-1.6.1.9.dev202303151678005709-cp310-cp310-macosx_11_0_arm64.whl (4.0 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

pyAgrum_nightly-1.6.1.9.dev202303151678005709-cp310-cp310-macosx_10_9_x86_64.whl (4.4 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

pyAgrum_nightly-1.6.1.9.dev202303151678005709-cp39-cp39-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.9 Windows x86-64

pyAgrum_nightly-1.6.1.9.dev202303151678005709-cp39-cp39-macosx_11_0_arm64.whl (4.0 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

pyAgrum_nightly-1.6.1.9.dev202303151678005709-cp39-cp39-macosx_10_9_x86_64.whl (4.4 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

pyAgrum_nightly-1.6.1.9.dev202303151678005709-cp38-cp38-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.8 Windows x86-64

pyAgrum_nightly-1.6.1.9.dev202303151678005709-cp38-cp38-macosx_11_0_arm64.whl (4.0 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

pyAgrum_nightly-1.6.1.9.dev202303151678005709-cp38-cp38-macosx_10_9_x86_64.whl (4.4 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

File details

Details for the file pyAgrum_nightly-1.6.1.9.dev202303151678005709-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.6.1.9.dev202303151678005709-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 c5dd5f27e5ffea74b5de2c7634c31bf1dc3287f3bb0c29e763d7fa733922754e
MD5 01f6c078e2d1aafbec49e963701ce012
BLAKE2b-256 cfda6888ac514803d5c65e8a2da949f3efcbf086da843cfc6bbd5541f6c5e972

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.6.1.9.dev202303151678005709-cp311-cp311-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.6.1.9.dev202303151678005709-cp311-cp311-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 8335e0063351dd0ce425118de2a749c76c3d45aea217f6593287bfd4cf6fb786
MD5 f6bbd29fd2d09f7f8a0ca7900d8a1ac0
BLAKE2b-256 5ab76e565c6ba09d4e914d5115f8005ed25bf3b5ce597e93f5af698bb35b4d4a

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.6.1.9.dev202303151678005709-cp311-cp311-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.6.1.9.dev202303151678005709-cp311-cp311-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 2586b13c57593872a7be30fae9324503d4cfd34974b5b89c9b5b2decc8a3f23f
MD5 4ca33c20a38d24fcd9e257d25c99ee7f
BLAKE2b-256 3c79449f9200176fa9254c50a7bfbb8be5b17bec3f62eb8adb7b2f3248beb642

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.6.1.9.dev202303151678005709-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.6.1.9.dev202303151678005709-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 bcf376fb63fc3a613bd2023f16bf006a8e4187b9b8d5251133c32ca734dc4acf
MD5 f5bdf25e8a792e2d77bd8b97b7e7c964
BLAKE2b-256 0c1ea24c1890a265bd1e548a53635b6a5ecaad313356570e1385634b39a17a13

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.6.1.9.dev202303151678005709-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.6.1.9.dev202303151678005709-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 fdd9a0fe647166ba611938da02c29c42931a5967b6120aa738c9547f83e953a2
MD5 1147d4b0dd17bf0d13e2e927d0e1524c
BLAKE2b-256 e4e5dcd00697b82ae4c394d3fa43ffe70439b95a5161c1106d54b2bd42cf016f

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.6.1.9.dev202303151678005709-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.6.1.9.dev202303151678005709-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 8b2a86399f35221ea436ebc373fe7a3d906bf3fc6bc3f3fd9a2fb0617f328cf4
MD5 20cfbcc2a92ce39a9c90cba92337ab24
BLAKE2b-256 3befc2e68d6763a09970197d42ce96e0a8900b28653a9c6c53314659d7fd5451

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.6.1.9.dev202303151678005709-cp310-cp310-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.6.1.9.dev202303151678005709-cp310-cp310-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 664ee6e5ddee0feccb609c8a41030776395bf39735961475181acf7abcffb28e
MD5 46c461a1067d112e7f1aa0bfbfd8c0fb
BLAKE2b-256 0df2b1fdd919d711ded698a69c30f5c7868785ef6a1158326353976b369e9b74

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.6.1.9.dev202303151678005709-cp310-cp310-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.6.1.9.dev202303151678005709-cp310-cp310-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 1922cce13fd89fad41024ade1c841449f9fca0e951763d8b12c0b3b8ca50c770
MD5 670836c13d9983307e6fd6435666539f
BLAKE2b-256 5c72f2c2a335f850b959622105f22911c787ac0416273046cab2f4f5270278ac

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.6.1.9.dev202303151678005709-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.6.1.9.dev202303151678005709-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 4dd66480e60186f3867a6711464c7a81db42c84d6099d5d93734085ca8713d30
MD5 13fff34993e699933833cbaf881a493b
BLAKE2b-256 6f506081d77314e8e05d229d0b8e6985a3798985bb121a9487ff8c5bdd993bb1

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.6.1.9.dev202303151678005709-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.6.1.9.dev202303151678005709-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 47df88c19cae9c657a87452ed0ad3557b8b83243a583c559766c98ff88a61959
MD5 2069e4386380066a41fdd2631581cfbc
BLAKE2b-256 9064520d2893fc2c41964a579b0b92fd2c07f4c601eecabab287c4725e7417ff

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.6.1.9.dev202303151678005709-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.6.1.9.dev202303151678005709-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 df4d25e686bed3e004ed81369e7eb5cdba7a306d8ca2498fde8b2b5debf16612
MD5 89f9d26d915f01eca05253e8880741bc
BLAKE2b-256 4bfbd45da23889a5e0a9afe46f408e9d1ee047bd22a0e3ffc59fdb9f802fc286

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.6.1.9.dev202303151678005709-cp39-cp39-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.6.1.9.dev202303151678005709-cp39-cp39-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 974ca80b9606d653bbf49fd2f02ae80cbf4fa2973a78f36605b4a1c9fa378bef
MD5 0108b207c0af2f3cb985fb90317b159a
BLAKE2b-256 e310a722d44dd70e732f3f514be2a2737bdc9e2f1e147fd454ea5556f18e90cd

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.6.1.9.dev202303151678005709-cp39-cp39-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.6.1.9.dev202303151678005709-cp39-cp39-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 2399cbe78dc04576fc8e11b008f617342f814361d8ab35cc9eee1cc68228bd13
MD5 cbaa7d2842ab70158b6391f97a727ccd
BLAKE2b-256 ed69f7f6f524f6d18333595e75a09c1a374f0f6105dd9e5030e1de0167eeb713

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.6.1.9.dev202303151678005709-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.6.1.9.dev202303151678005709-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 2337cf1d4474967cc011fc995adfbae3cf2f4ccb0240d194b0760ce539499057
MD5 3354dc546d718bf54dd32ef6b0f67312
BLAKE2b-256 43d64dbba83d714ff1d9d18e489fd5e317d0c78ba4923e321a1ab9f34b6617b5

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.6.1.9.dev202303151678005709-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.6.1.9.dev202303151678005709-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 e6b9397d9c961bf5a81c64fe8083d9c17774e0710a427b3348d55784a88f2909
MD5 d49a324a158163ea2b288744b61197b5
BLAKE2b-256 c8af3b69c1202b38bbbf22ef58b272ba4fa40af9f9ea90d19a125a5461a22cfb

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.6.1.9.dev202303151678005709-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.6.1.9.dev202303151678005709-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 412497f6e20f520777ebcad761ffc3d217d6892986adb0d6bdb45915c93148ab
MD5 dd4f444797ce4e537761276fca9ae546
BLAKE2b-256 cb53ef919b7cc1beb2fc34dfaebd13d2e371dbc6b74261291115eba11c8a03ad

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.6.1.9.dev202303151678005709-cp38-cp38-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.6.1.9.dev202303151678005709-cp38-cp38-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 322a6e973f60a3fbb0f673dbc90eb1d675f3dcd60b6c7abb40ad465cb4906341
MD5 a1792a270586841827fc31c2803cb62e
BLAKE2b-256 312777fc5f2ec3458b03f56f084688679b5bc69964d1fcbc4fa419b39e8891c1

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.6.1.9.dev202303151678005709-cp38-cp38-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.6.1.9.dev202303151678005709-cp38-cp38-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 3adcb9fd8b49200f68457deda10dffb35e6626b1c5edc095a80656722b0e6bff
MD5 08ecdc24c13388391b90d4012121aace
BLAKE2b-256 4e9e5de29f9f013450f1133ea3c5f25b919468c698af26e7b87fbf3ef3b3d9f3

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.6.1.9.dev202303151678005709-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.6.1.9.dev202303151678005709-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 813ed84e28003fbcc75ee4f868679c24a07551992892f0dff872b47d9c4dfd63
MD5 cab415c9b0ea82f23300230f628c985c
BLAKE2b-256 d4f2227c0d3280301344d55fd76442e9df8157c309ff3a5968d7a473d63f1a11

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.6.1.9.dev202303151678005709-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.6.1.9.dev202303151678005709-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 02ed5ea0f2871af6829af32bf3056cba6a58823a7f1e238f1ecad3c46901e5df
MD5 e7f207bc4b0f59e219ff410c30efb5b7
BLAKE2b-256 e52cb5e55e203d009dad1c787af25041f0a5db2785255dead6b4f2d8140f2d26

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page