Skip to main content

Bayesian networks and other Probabilistic Graphical Models.

Project description

Description: pyAgrum is a scientific C++ and Python library dedicated to Bayesian Networks and other Probabilistic Graphical Models. It provides a high-level interface to the part of the C++ aGrUM library allowing to create, model, learn, use, calculate with and embed Bayesian Networks and other graphical models. Some specific (python and C++) codes are added in order to simplify and extend the aGrUM API. The module is mainly generated by the SWIG interface generator.

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

pyAgrum_nightly-1.6.1.9.dev202303161678920759-cp311-cp311-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.11 Windows x86-64

pyAgrum_nightly-1.6.1.9.dev202303161678920759-cp311-cp311-macosx_11_0_arm64.whl (4.0 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

pyAgrum_nightly-1.6.1.9.dev202303161678920759-cp311-cp311-macosx_10_9_x86_64.whl (4.3 MB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

pyAgrum_nightly-1.6.1.9.dev202303161678920759-cp310-cp310-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.10 Windows x86-64

pyAgrum_nightly-1.6.1.9.dev202303161678920759-cp310-cp310-macosx_11_0_arm64.whl (4.0 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

pyAgrum_nightly-1.6.1.9.dev202303161678920759-cp310-cp310-macosx_10_9_x86_64.whl (4.3 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

pyAgrum_nightly-1.6.1.9.dev202303161678920759-cp39-cp39-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.9 Windows x86-64

pyAgrum_nightly-1.6.1.9.dev202303161678920759-cp39-cp39-macosx_11_0_arm64.whl (4.0 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

pyAgrum_nightly-1.6.1.9.dev202303161678920759-cp39-cp39-macosx_10_9_x86_64.whl (4.3 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

pyAgrum_nightly-1.6.1.9.dev202303161678920759-cp38-cp38-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.8 Windows x86-64

pyAgrum_nightly-1.6.1.9.dev202303161678920759-cp38-cp38-macosx_11_0_arm64.whl (4.0 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

pyAgrum_nightly-1.6.1.9.dev202303161678920759-cp38-cp38-macosx_10_9_x86_64.whl (4.3 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

File details

Details for the file pyAgrum_nightly-1.6.1.9.dev202303161678920759-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.6.1.9.dev202303161678920759-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 d7e20ff2d574f04e0a609d5167bd7e985ccdf9c4bc6c14674f5de4d58827df8a
MD5 2b2a9d87bd5885a317e3fd8e75b9ef67
BLAKE2b-256 3487f63c275abe00c52f669022ebd24f9f837cf9417b4df0b7992dcac7edccc0

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.6.1.9.dev202303161678920759-cp311-cp311-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.6.1.9.dev202303161678920759-cp311-cp311-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 7c06127e8e5c36ef37d49a69e301389eed9c9a181e94654b21e452b369ca0f4d
MD5 133f0eab50849c8f610bce04fe0073e3
BLAKE2b-256 b642e75b9607bcdaf65b0e56cb26b80c522dab6c19b12298cfdd9fb7e8c08af9

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.6.1.9.dev202303161678920759-cp311-cp311-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.6.1.9.dev202303161678920759-cp311-cp311-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 c452449b0905f30b6368caaf9922b9e0872aaa39152a5b8bb8b255546a954b54
MD5 7e619a5ce7c473cb51dd82774a88d6c0
BLAKE2b-256 18e669850f78aefe713c5c79779d1db2f2ba6dcab896c682260f63d3595142d5

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.6.1.9.dev202303161678920759-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.6.1.9.dev202303161678920759-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 41586bef331453d1f44bb0483f5ea55ea3c646b46e8de62826ef2af9b9d727df
MD5 9eb9e4aa83491987410e03814371bc0d
BLAKE2b-256 2629857f514244ca1439d08e1107192f55e46e35e3d36648013d662bb725a876

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.6.1.9.dev202303161678920759-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.6.1.9.dev202303161678920759-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 365a9282d2b1a31fe47cfb61386886d4cafd618ad50e0363b9c232f858ad547e
MD5 52862fe880ab5ab21c10cd0f39c6a5e4
BLAKE2b-256 754307aecfa8c29a78f81fdd9eee418031381cc1ca90a25537d40e316739b626

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.6.1.9.dev202303161678920759-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.6.1.9.dev202303161678920759-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 03811b2d92390cccaec1b541da7246e82e749fe91be8cb10dbe2546d88d7e2df
MD5 d946c9caa9f641a71f2f2ccdaec1b47e
BLAKE2b-256 3f53985f6f11177935431e5fec076c8a4b1ef7b391e8cd6a039a6ac0f7e5b2e2

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.6.1.9.dev202303161678920759-cp310-cp310-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.6.1.9.dev202303161678920759-cp310-cp310-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 aba70a54bede63be72a93b707a65c76ec8d17a1d1801362b7805fa1d410d60a6
MD5 8f975ec876db94114328693f7473a33a
BLAKE2b-256 eb0bbb4d794a75fb38c2e69a5fa9055df8801202f30a9bd64d52d764200e79a5

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.6.1.9.dev202303161678920759-cp310-cp310-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.6.1.9.dev202303161678920759-cp310-cp310-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 caba28b9edab316724f787ffef15822cd735d38b2a3586f8ad2a7b96aa1ef2f9
MD5 bebee0348b0307614536b86f8cb1731b
BLAKE2b-256 1b2025ea405b3694966bd1978ed75bfe8b66b424f3d36c83793eef8b8e16b388

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.6.1.9.dev202303161678920759-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.6.1.9.dev202303161678920759-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 154b124e463a716d1831e92c09b67ab1566ba83d859bbc79ce3201ab8cd83d8e
MD5 f3f2db16cc5927e12235a40efd946a0a
BLAKE2b-256 0e082294b6faa4ae2aedb3a49b3f2aa5c86e0447f83e15ff80b6f5f206cc3e8b

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.6.1.9.dev202303161678920759-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.6.1.9.dev202303161678920759-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 7afb9c03977cb06954f0c5fd911c5cfdcc961a12a01be284e195fb53668911a8
MD5 1d5a752594630b95eb3c34854e4c346c
BLAKE2b-256 44b72350b50814b335906ac438173c585cf6da5ceeb3bc8fe438794bb45d8b25

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.6.1.9.dev202303161678920759-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.6.1.9.dev202303161678920759-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 b3db0238178de124a2a9606dd77d71710f1317a4d0061fbaab3ef66af8e7fe46
MD5 8146567ef1382289e146c8f9fa9d3cd3
BLAKE2b-256 c40a11097056320840b0f7f99a3469c32c55bb954e7ce5b1f4ad55571ec65ce5

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.6.1.9.dev202303161678920759-cp39-cp39-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.6.1.9.dev202303161678920759-cp39-cp39-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 5d385d6b5db45050fc9fd723309a6e082f9d62b304e12e8019bef2412fe02d5b
MD5 8b728a53dcc6dc17d02fc2e8f020838d
BLAKE2b-256 6d8bce3221651751487a23455ec1ac8c1077168ea9fda8270fd528893d01f370

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.6.1.9.dev202303161678920759-cp39-cp39-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.6.1.9.dev202303161678920759-cp39-cp39-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 12b31d438a6e88206ff52c7730c6a336202f2b3a1675de8088c21bc984f9cf77
MD5 daaa74fdc542b9b60e9fc62399f8052d
BLAKE2b-256 01e67c32258c90846fc705c8887a7a5a8375a14a10e1ccd8cd7952d56007a62e

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.6.1.9.dev202303161678920759-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.6.1.9.dev202303161678920759-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 d698b12c5f31daa840a6be4e338640ec676255ecd058041f64fab82356411d4e
MD5 3926ceb9f84c8829726e652b0936b869
BLAKE2b-256 397f3e3d6342fdf1218631ebd272459efa2a6d317cc1dd1c55a7cc734df0140e

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.6.1.9.dev202303161678920759-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.6.1.9.dev202303161678920759-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 6a02a84d8f08fcdb3f388f677c9fba43370eeac9e8fb60378bbdf694f13b2043
MD5 585593f843c83aac057948e78f23b224
BLAKE2b-256 00d868dd9342bc78c4062bbb7eb0b77b1b0a6898441e9de95e031048b440bb23

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.6.1.9.dev202303161678920759-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.6.1.9.dev202303161678920759-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 809abb3dae722c66d775715f606b3dbd7e769367c8e89813671d037af80648d7
MD5 790ad6c6f916c35ec75ecc6106ddc332
BLAKE2b-256 75d3bc076b3d7ec5474d099c8b3a6ad54b843dcce11c90b9e28d4f97ad88711e

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.6.1.9.dev202303161678920759-cp38-cp38-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.6.1.9.dev202303161678920759-cp38-cp38-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 0663ee91b3b621140ad20bd5edce02ad1e613b4ff8e6aaee2b5efb13b78692a2
MD5 1b5020787aa369222d6c5e738374a5a2
BLAKE2b-256 17ab126a60a28fa103f6b4fa3aef74a5d5cd419d14c4c340382d200d1415264e

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.6.1.9.dev202303161678920759-cp38-cp38-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.6.1.9.dev202303161678920759-cp38-cp38-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 2cac434f3d7d9f8f1a782fb97708f8be1636642e4fa12e09ceebe5daed0bbd15
MD5 a46a3fd596e53a2a9825fccad88a89ae
BLAKE2b-256 657db4a29047901d0ec661d564cff2c9925ebf09f967e291899a21ff4b7eb6f9

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.6.1.9.dev202303161678920759-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.6.1.9.dev202303161678920759-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 1378e5f894573b087aa3cba4eb87f2842292f61a0b95bbb4a727ec3196fcbe12
MD5 698cdcb757f362feb54e9eb95865199d
BLAKE2b-256 1900a3ca743d4fef6386fe4322129d25c6326ae87ff32a4d6ed86087c77e0a05

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.6.1.9.dev202303161678920759-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.6.1.9.dev202303161678920759-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 91746a235292f3292a4381c90c5777bc60ab704bbac35346d0d39416dc69d0d8
MD5 17bfb90c462df97a9f7e25430f572de8
BLAKE2b-256 10e5f1585637d0b74c520f844cad4a9d7f521e3a9717cf8af4106f1d2b566af5

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page