Skip to main content

Bayesian networks and other Probabilistic Graphical Models.

Project description

Description: pyAgrum is a scientific C++ and Python library dedicated to Bayesian Networks and other Probabilistic Graphical Models. It provides a high-level interface to the part of the C++ aGrUM library allowing to create, model, learn, use, calculate with and embed Bayesian Networks and other graphical models. Some specific (python and C++) codes are added in order to simplify and extend the aGrUM API. The module is mainly generated by the SWIG interface generator.

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

pyAgrum_nightly-1.7.0.dev202303181679057821-cp311-cp311-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.11 Windows x86-64

pyAgrum_nightly-1.7.0.dev202303181679057821-cp311-cp311-macosx_11_0_arm64.whl (4.0 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

pyAgrum_nightly-1.7.0.dev202303181679057821-cp311-cp311-macosx_10_9_x86_64.whl (4.4 MB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

pyAgrum_nightly-1.7.0.dev202303181679057821-cp310-cp310-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.10 Windows x86-64

pyAgrum_nightly-1.7.0.dev202303181679057821-cp310-cp310-macosx_11_0_arm64.whl (4.0 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

pyAgrum_nightly-1.7.0.dev202303181679057821-cp310-cp310-macosx_10_9_x86_64.whl (4.4 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

pyAgrum_nightly-1.7.0.dev202303181679057821-cp39-cp39-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.9 Windows x86-64

pyAgrum_nightly-1.7.0.dev202303181679057821-cp39-cp39-macosx_11_0_arm64.whl (4.0 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

pyAgrum_nightly-1.7.0.dev202303181679057821-cp39-cp39-macosx_10_9_x86_64.whl (4.4 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

pyAgrum_nightly-1.7.0.dev202303181679057821-cp38-cp38-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.8 Windows x86-64

pyAgrum_nightly-1.7.0.dev202303181679057821-cp38-cp38-macosx_11_0_arm64.whl (4.0 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

pyAgrum_nightly-1.7.0.dev202303181679057821-cp38-cp38-macosx_10_9_x86_64.whl (4.4 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

File details

Details for the file pyAgrum_nightly-1.7.0.dev202303181679057821-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.0.dev202303181679057821-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 001eb2ede04bae30b19bf2d1c26f84feb60ca260457d9aff2c9d448c93110332
MD5 f755428bac761a01d73b902c7fa23928
BLAKE2b-256 12e16b714a1936a57cbf4f645d15e9e59b5e609cb4076b2c488f612d7673153e

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.7.0.dev202303181679057821-cp311-cp311-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.0.dev202303181679057821-cp311-cp311-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 1017b142bbad71d411dd41509add123d9af6b99d42805e790f7c38634d903a79
MD5 772bde18ba352c8178753b3c38f7d568
BLAKE2b-256 e174dd18d87e9abff681213720929ec6de24edd6e020db887aecfe569797f460

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.7.0.dev202303181679057821-cp311-cp311-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.0.dev202303181679057821-cp311-cp311-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 fbde0cf95deee22c839357d0ebe8482982dc433282dfe1038b6ed6dba5ff9288
MD5 ed290ec0b482fe0e369b00f3e67b9039
BLAKE2b-256 0151215c1893308eee61cca5cf7b2b64b9af34a3d31eea3c8ec3d2d2588f45f8

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.7.0.dev202303181679057821-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.0.dev202303181679057821-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 a1670e87ad7aec70ded7e054e6dd09bb19db7b054021c8c17a04e3598ec42c0d
MD5 a6493f29615ef618010de305ac36f01b
BLAKE2b-256 2959aad1987cddd96a0615ea6f6d1321aee0c6d913b1f615d500448539320372

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.7.0.dev202303181679057821-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.0.dev202303181679057821-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 5e28f3839555cf67d9d41e7ea921de547438373fe0abc6189a93f3ca887944d1
MD5 21671f50b8d7d85248b26b6f1c2660b2
BLAKE2b-256 c0b2f21ada79ed676e2fd660e884b34757f226f27d19a114fa521d51d47bfe23

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.7.0.dev202303181679057821-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.0.dev202303181679057821-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 306890599000b413e846f8a70404e002a6b2110223d2c78f923ef91271ab58f1
MD5 fe26fc7d04428d90f4ad5884e7a172e8
BLAKE2b-256 de06864384e7ab8cb4f4d0019a762677c6e1508215426d1bde5ce34fe240ea24

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.7.0.dev202303181679057821-cp310-cp310-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.0.dev202303181679057821-cp310-cp310-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 6e828e4a663ef364662d055ee2ac84509e58673889a644c5d30b343a18ad452b
MD5 58828b3dc9396caf99908e70f3cd54f6
BLAKE2b-256 4193830bdfdf595130c5cbeb0128a6783bd3cb4f30446c672d4c950ec0854152

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.7.0.dev202303181679057821-cp310-cp310-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.0.dev202303181679057821-cp310-cp310-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 0a61466a16b937583db378ba289218048e64388dce5c26bb9a60488b723eb7e9
MD5 abb1d23fa5b1fe62f2607d062e69d78e
BLAKE2b-256 ca3d8211af82004bf3b4e9af4a0a009ea328bfe845f93d9faff647c872ab67f3

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.7.0.dev202303181679057821-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.0.dev202303181679057821-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 e8a25d56bf431f5e0c19df25ff94dee3bef3104eb764e4c17b948c9199bab4ef
MD5 3dca65a33a13b97c640a4ba55d57c907
BLAKE2b-256 a1c47eb509732ecfc79b1dc3a731876ffbf805f0a9d77dbc0a91ae664a4d4916

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.7.0.dev202303181679057821-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.0.dev202303181679057821-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 4219da16c2e86062de1cd1e474c1ae90fa691404b9d6d662994de5bde6d52640
MD5 0c5e8bf269c4af1f6043dca562845449
BLAKE2b-256 8de253bda23e56b816ab5d218424f6d7bef951f1bb06291c00f6f8d8493b2c71

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.7.0.dev202303181679057821-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.0.dev202303181679057821-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 57c4dbaea4f5e0629d17682519f4c65178410d4734ae1c59fb681985ddce90d4
MD5 be57d7a9a0a5879ae4ef6ab784d4a77d
BLAKE2b-256 98260af4fc9c3698a927b103c7c224430ec7d896db0608ecf1442bbe9c15293c

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.7.0.dev202303181679057821-cp39-cp39-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.0.dev202303181679057821-cp39-cp39-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 a7bcef7e5d01ef410621aad7b2fa12ace2b8439e7df3180161e0df790f0f0546
MD5 0c2ccd5423b9d1ce5d419e4969425be6
BLAKE2b-256 ff02df591f545ed5462cd76eebb7ed96777139aaa242240ce2fa74807649cbc5

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.7.0.dev202303181679057821-cp39-cp39-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.0.dev202303181679057821-cp39-cp39-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 882717864dc607c2903ccf9afa1a40a7f8e168f8777162d219350125e3bb038f
MD5 fc208f9bc1e083d999c7284fa75cc240
BLAKE2b-256 29522515bf5482ae3570c896eb5169e2165654aef0e22ccf3209a1c80501d39c

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.7.0.dev202303181679057821-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.0.dev202303181679057821-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 6cc88b48daaa8addaaec5c45ef318fad84eb36f6642a6a80024c966ca819d931
MD5 b80b1cc92b4c2f5a19f556999a5eb31c
BLAKE2b-256 633cee1f4eac8943c06b5d456997cc920d6bf52e603fdb169d18f977035fa4f0

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.7.0.dev202303181679057821-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.0.dev202303181679057821-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 25bf3cc9162579fade6951c8a76e3228b289116ab2b422556beed81318a7c1c7
MD5 818a6e1cc9c1a9110fec80efc8e51f39
BLAKE2b-256 42512db921914c6efbeb6e584b297f13767401df0c009caeb1b51b84c7e4c0b5

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.7.0.dev202303181679057821-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.0.dev202303181679057821-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 402df6088fa13c994ade8544747dba6cb7db92693ca2c6b7c83a25b2a8ecbeea
MD5 57779b79707aca05408325679aee1961
BLAKE2b-256 c98985287ba50cb200d20599ad5ea6e39ed2a31b2020a4dce915e6d37c96e623

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.7.0.dev202303181679057821-cp38-cp38-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.0.dev202303181679057821-cp38-cp38-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 9a07034080f6f31eb2fd9b61d2973fa468913465e2b7489e0020ddcbfb5e3fe7
MD5 69cd1aab236bfb9f4cd5f769cd58ac20
BLAKE2b-256 40f7cdd2de16d893fa52f12ac48dbe0c7b6d5445d194ec2457256d8be6df6320

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.7.0.dev202303181679057821-cp38-cp38-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.0.dev202303181679057821-cp38-cp38-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 87df4f059eaa48adde59f72fdf6b7bb623b0ff8ffb07c5e99da9048666daad6f
MD5 ba65b43113e7f9d118f41b6ef4bba15d
BLAKE2b-256 6e2e82b43e1f237f84784b2792af221b82cc919e1fba3268501f2c8b41ede260

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.7.0.dev202303181679057821-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.0.dev202303181679057821-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 ae9ced14eceb384fcc47209a5ea7097fcb74f6426bc873ff59fb33a1dfe52776
MD5 ea086a97be8ea39b66442351406485a1
BLAKE2b-256 ef11cbafc0ae7dadb8eb13bac239d216dafc4a3b1dbdfe8ed9974b2226ed5082

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.7.0.dev202303181679057821-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.0.dev202303181679057821-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 4567f8a730db5fe83912f29fe84748f9e55f09e551291268e5413ce099d392df
MD5 895b1a1499bdb55263d3cf74282aff6e
BLAKE2b-256 26258cde779b6b4537855925d9b602d1557549a3ade11215b9374351bbe2684b

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page