Skip to main content

Bayesian networks and other Probabilistic Graphical Models.

Project description

Description: pyAgrum is a scientific C++ and Python library dedicated to Bayesian Networks and other Probabilistic Graphical Models. It provides a high-level interface to the part of the C++ aGrUM library allowing to create, model, learn, use, calculate with and embed Bayesian Networks and other graphical models. Some specific (python and C++) codes are added in order to simplify and extend the aGrUM API. The module is mainly generated by the SWIG interface generator.

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

pyAgrum_nightly-1.7.1.9.dev202303191679145161-cp311-cp311-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.11 Windows x86-64

pyAgrum_nightly-1.7.1.9.dev202303191679145161-cp311-cp311-macosx_11_0_arm64.whl (4.0 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

pyAgrum_nightly-1.7.1.9.dev202303191679145161-cp311-cp311-macosx_10_9_x86_64.whl (4.4 MB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

pyAgrum_nightly-1.7.1.9.dev202303191679145161-cp310-cp310-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.10 Windows x86-64

pyAgrum_nightly-1.7.1.9.dev202303191679145161-cp310-cp310-macosx_11_0_arm64.whl (4.0 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

pyAgrum_nightly-1.7.1.9.dev202303191679145161-cp310-cp310-macosx_10_9_x86_64.whl (4.4 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

pyAgrum_nightly-1.7.1.9.dev202303191679145161-cp39-cp39-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.9 Windows x86-64

pyAgrum_nightly-1.7.1.9.dev202303191679145161-cp39-cp39-macosx_11_0_arm64.whl (4.0 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

pyAgrum_nightly-1.7.1.9.dev202303191679145161-cp39-cp39-macosx_10_9_x86_64.whl (4.4 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

pyAgrum_nightly-1.7.1.9.dev202303191679145161-cp38-cp38-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.8 Windows x86-64

pyAgrum_nightly-1.7.1.9.dev202303191679145161-cp38-cp38-macosx_11_0_arm64.whl (4.0 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

pyAgrum_nightly-1.7.1.9.dev202303191679145161-cp38-cp38-macosx_10_9_x86_64.whl (4.4 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

File details

Details for the file pyAgrum_nightly-1.7.1.9.dev202303191679145161-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.1.9.dev202303191679145161-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 b918e02ca6ee1131ae77aca4b929ed7f01cacc8de25955da5c3ee340d6a3cd76
MD5 c843e783b9ec9e32f37d7196b3fb9322
BLAKE2b-256 5425b7e86201c30210594092ff01cffdbccb3d024140c09767c7e9ef705d31dc

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.7.1.9.dev202303191679145161-cp311-cp311-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.1.9.dev202303191679145161-cp311-cp311-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 0563a3e94f4b081f32b973c48f42824a587dc0b3330e79eb639a4c39c2b1d15e
MD5 c3cc587b8f4c31f1e0618bf9518dc32e
BLAKE2b-256 11242b47cfd1f37adbb12d09e7e1451aabf3006445576c6e29383e10ddf0ea9d

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.7.1.9.dev202303191679145161-cp311-cp311-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.1.9.dev202303191679145161-cp311-cp311-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 83fc5356ba869573cea290ee5df6460f00f94d27ab3632d6746b4f1b89dcf286
MD5 08c4feb41e3c58c81884b93157c8edd9
BLAKE2b-256 453cb17de22c981ec38b8669276cbf405a0523fbe4eafb47183fc0f18239049b

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.7.1.9.dev202303191679145161-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.1.9.dev202303191679145161-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 77b19d75f6fface9a69c4bb951016b9a86bf41c9ee6bba4272a5ab74375f5b0f
MD5 f67022981ec3c276cafb7fc5e1e69a65
BLAKE2b-256 6460293833b66231d3bdb39aca1a0363fa297bc796a2871be50fb7c72296ae73

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.7.1.9.dev202303191679145161-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.1.9.dev202303191679145161-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 8840ed03adab9bcf7cbaf5b542da223b6f38f15faa78493f43c3d699a1abbb3b
MD5 31c10a1851b6b1c69f4f965fad201223
BLAKE2b-256 ec044031413ae05cc813cafae05eb9ecbe5c5d095c9d8ed0b5e0102142cc2bdc

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.7.1.9.dev202303191679145161-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.1.9.dev202303191679145161-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 1041d57dad181e4657fadc61094971cf3a1b7139fb7d108322a45eec1b7d9da1
MD5 fc81634084ea00d9227821cc1937115a
BLAKE2b-256 b22f9146b103c974175c86f1cb92a3d472c8058d99e9937628931c5579771e5c

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.7.1.9.dev202303191679145161-cp310-cp310-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.1.9.dev202303191679145161-cp310-cp310-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 aebf20c77b87b6125403facb20fda28108f00e5d151e0d1755fa9f5b540e5af9
MD5 b7d53b9c8166d553c3240c9692bf3d83
BLAKE2b-256 ae493ce7a7dc7dfea50ccce4f9f73798557e89e3198eb1f8a369744c9afe19f2

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.7.1.9.dev202303191679145161-cp310-cp310-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.1.9.dev202303191679145161-cp310-cp310-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 03bd240cd04556aa4ec7ccca5227d3825f36d32f1013574377daa11dfa566d4a
MD5 faf607306cffc36ede2ddc6c7d1fbc1d
BLAKE2b-256 746527b3703497ce00cdb1f637c65683cbc39c0da1540e6e51355e8299daed38

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.7.1.9.dev202303191679145161-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.1.9.dev202303191679145161-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 92cb5a9e602fdd29554bebfbe7d577ccaee12ccfe8469da874bfa664527bbc97
MD5 a666b45c070f64a1b0730d042646c786
BLAKE2b-256 f7e51cfd72dfb93d154254695184739a82b7abe7c58330a9785d969855791298

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.7.1.9.dev202303191679145161-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.1.9.dev202303191679145161-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 43c3255a68c0e1ce5edda6c211f6baa901e6c398903dbee96f6fab49d68174b1
MD5 9d0b634c9b586fbfb3c4a5c449f98809
BLAKE2b-256 a8691ec1386abddc47735474a884058c08e6d12b90beb39c8b2ec50a60c32134

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.7.1.9.dev202303191679145161-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.1.9.dev202303191679145161-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 94dce9fa5b505f331861bc5e9280623c8f3a7a9b7457ec81826939f5e629af8f
MD5 b19880ce1100175ccf2b0ecd06cb4b4b
BLAKE2b-256 ac3bc1ec3b14570b401494c73bddaf2f46f764f35723dc2f8684ce2375749f63

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.7.1.9.dev202303191679145161-cp39-cp39-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.1.9.dev202303191679145161-cp39-cp39-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 19f92020ca010d2d64b1ca68ac8b9f9ce4d5e8e72305016de1e0931803689bc3
MD5 65d9c8d1341c1b6ec7a312bd7ece3f26
BLAKE2b-256 07f1d3abeeb71ccc5cb23b18ece5c980cdc46c3b864d1771106f40d4d8e3d0f5

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.7.1.9.dev202303191679145161-cp39-cp39-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.1.9.dev202303191679145161-cp39-cp39-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 e224151887b4cc75e9496192f542fed5696be9b191e728c610a8138e0506067a
MD5 09d4f4ce5e06c680fea37965e5174b20
BLAKE2b-256 4c23120de0ecdd477eb37f6600af27ad82900b7f5c467e7b2878dbf3f3dc115e

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.7.1.9.dev202303191679145161-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.1.9.dev202303191679145161-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 a8b5b3eb390da726661002858111211f220edff5a6546ba23ae4a2b9c7af462b
MD5 203652a10035ca72df8acd04e5493986
BLAKE2b-256 95f4e7e515d348ec7008614f265d418e10122b5e0e76112603481888ac18dcf1

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.7.1.9.dev202303191679145161-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.1.9.dev202303191679145161-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 b52cbcb5f28bc41ea008c2955714a815e7ea21955eaf98fab8a35f5b3ff56f8f
MD5 20311a3ac553552d70ce57f039ae1514
BLAKE2b-256 f8a73e2face3361bbd9eaa5ad48c4554af01bdebbbc5b19c1f667acece89895d

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.7.1.9.dev202303191679145161-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.1.9.dev202303191679145161-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 9b0bc5b4b312987563086c91d5b15160b90cfed999b0ed8ac4384a936c632d51
MD5 d44650ab85dff2683b270b12f723f3a3
BLAKE2b-256 63338f7d09dc14d7862762a9ce91d50033ad23e379a6ccded0e8306dd68acee5

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.7.1.9.dev202303191679145161-cp38-cp38-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.1.9.dev202303191679145161-cp38-cp38-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 0bfb83b73710d46a709e7ce3df7d3f6e1b6b4890d2bd370cb7842623ceb69b3d
MD5 5201adc8f07eece9dd4303be3de1786b
BLAKE2b-256 05ea5f4fe80c8ea020512e5fdd4ede432eab285943dcb655fc937d880368b9ed

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.7.1.9.dev202303191679145161-cp38-cp38-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.1.9.dev202303191679145161-cp38-cp38-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 5f4c0be5fcab828b02f1a34c717e6176172647ff6ea4638e7552ec077889ab10
MD5 7491526b28c9a07934b0cc2cb002fc49
BLAKE2b-256 1a02c6e2b0cc7f4d2af72a0e12ffe285928a927fa60417f0f01c5d55e2d59ec1

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.7.1.9.dev202303191679145161-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.1.9.dev202303191679145161-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 06f33d36da08fa9a7d6db628edec94873b62d5dd8eac596dd611f9b3000fa3b8
MD5 6c07139aaa42bcc9a1b138d262317b25
BLAKE2b-256 e20297d3c58942837bb7572a7656af016c3539ab28f0d52510d2085356b3d733

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.7.1.9.dev202303191679145161-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.1.9.dev202303191679145161-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 a8bad1d547b810887fa3471cc47fb87e27bded1ab09d17d7b6cc0dae5aecc226
MD5 5f2f7c2fb366413b35ed73817ab6999f
BLAKE2b-256 19415dc0e0c060be8fccd3f6b6038991f61908d6166383477ae71426ab422126

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page