Skip to main content

Bayesian networks and other Probabilistic Graphical Models.

Project description

Description: pyAgrum is a scientific C++ and Python library dedicated to Bayesian Networks and other Probabilistic Graphical Models. It provides a high-level interface to the part of the C++ aGrUM library allowing to create, model, learn, use, calculate with and embed Bayesian Networks and other graphical models. Some specific (python and C++) codes are added in order to simplify and extend the aGrUM API. The module is mainly generated by the SWIG interface generator.

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

pyAgrum_nightly-1.7.1.9.dev202303221679303135-cp311-cp311-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.11 Windows x86-64

pyAgrum_nightly-1.7.1.9.dev202303221679303135-cp311-cp311-macosx_11_0_arm64.whl (4.0 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

pyAgrum_nightly-1.7.1.9.dev202303221679303135-cp311-cp311-macosx_10_9_x86_64.whl (4.4 MB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

pyAgrum_nightly-1.7.1.9.dev202303221679303135-cp310-cp310-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.10 Windows x86-64

pyAgrum_nightly-1.7.1.9.dev202303221679303135-cp310-cp310-macosx_11_0_arm64.whl (4.0 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

pyAgrum_nightly-1.7.1.9.dev202303221679303135-cp310-cp310-macosx_10_9_x86_64.whl (4.4 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

pyAgrum_nightly-1.7.1.9.dev202303221679303135-cp39-cp39-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.9 Windows x86-64

pyAgrum_nightly-1.7.1.9.dev202303221679303135-cp39-cp39-macosx_11_0_arm64.whl (4.0 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

pyAgrum_nightly-1.7.1.9.dev202303221679303135-cp39-cp39-macosx_10_9_x86_64.whl (4.4 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

pyAgrum_nightly-1.7.1.9.dev202303221679303135-cp38-cp38-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.8 Windows x86-64

pyAgrum_nightly-1.7.1.9.dev202303221679303135-cp38-cp38-macosx_11_0_arm64.whl (4.0 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

pyAgrum_nightly-1.7.1.9.dev202303221679303135-cp38-cp38-macosx_10_9_x86_64.whl (4.4 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

File details

Details for the file pyAgrum_nightly-1.7.1.9.dev202303221679303135-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.1.9.dev202303221679303135-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 809a1dd869634317f56ebc5341a570f615d62e4f66db5ef2592a3af805f9d760
MD5 883f74174d91a6853a17bcecc04dc2a0
BLAKE2b-256 361ec96da5d710ec5eb01ea44ea5772e58fef33a78e45d86554f236468b391ab

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.7.1.9.dev202303221679303135-cp311-cp311-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.1.9.dev202303221679303135-cp311-cp311-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 113e239ed6ea5eef9c37819a983a5030005c732551081b3dd98a1a8371ed65cb
MD5 d30e0cfa4fe723669cec6d3301bed5fc
BLAKE2b-256 a4e9cb7f9a8347e5835ca130adaf29e86e6944f6096dc94c047527716cbdc089

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.7.1.9.dev202303221679303135-cp311-cp311-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.1.9.dev202303221679303135-cp311-cp311-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 b60e28a06b29df10cc3a54e151c5b72c1670e059cf3b92e71fd78707453ca24f
MD5 4cd4d43db6906801b1e41d5b191d1581
BLAKE2b-256 7d8e89f8403d6d1568f0e3634277eb0253d030284f453b9a574aae719082933e

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.7.1.9.dev202303221679303135-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.1.9.dev202303221679303135-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 d56a9ea14a09c9fb0195153073e55916ae118d6e141f0bc1941752a72d1d1f54
MD5 5ff75a4009b2cc5db10a2177551a4d9f
BLAKE2b-256 c45250edd0465647696800c762bfe6157b59e4ea322f393039c0b6920d7c509e

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.7.1.9.dev202303221679303135-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.1.9.dev202303221679303135-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 7ca0e1c6a74e50ead2b526b36f6fc44756ee36d5091e6709067e08b5514631f7
MD5 b0b44eeeecd43d3fd49b2a2de77776b5
BLAKE2b-256 0cb2ceed5bbdc182f52b9f1c3b987f2c537bd38b56fe1d1a0bbfe56fd688130c

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.7.1.9.dev202303221679303135-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.1.9.dev202303221679303135-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 4e60e89437ec2b82adc4d08611f8edeef30df954990126655950b7edf0c9aebb
MD5 723f0fad7068173f4db4573ea676b0d7
BLAKE2b-256 c7fbf9427c3814a830dd63555c7ef9924f98ddeaa8001ecdf9485bb90b82645b

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.7.1.9.dev202303221679303135-cp310-cp310-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.1.9.dev202303221679303135-cp310-cp310-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 11242c58c21244b46fe4be88644ba8c25d73ff7bd57d3b5cae96d367fa1fa0eb
MD5 bff3ca9f5af7d9f65758d0541cff7105
BLAKE2b-256 de4e6f522ed5f129d83e5e315f8562c44764b09e56d4f36ff0a66972d5dfca8f

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.7.1.9.dev202303221679303135-cp310-cp310-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.1.9.dev202303221679303135-cp310-cp310-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 cd0391fd05ae13bcd18022ec67e75f04faeac7c52b72ca0113985baa6c062afb
MD5 4c46fd0bb5061e7b2ed6a6b031ecd0f5
BLAKE2b-256 a2a94e87f5c6b64f388a15f3d6949c6dd0822c20fb5b4289ae650cb84841bca4

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.7.1.9.dev202303221679303135-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.1.9.dev202303221679303135-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 586614809e87950fafe383629848dab6e01a342ef0638de46b7a9f6065ec7f82
MD5 06da3f6f2692413704b22c7818953b9d
BLAKE2b-256 49697a3937d67760a41746dcea4853d62f3e97797c660a51b739b8b89a86f34c

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.7.1.9.dev202303221679303135-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.1.9.dev202303221679303135-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 3c2fa20c8667cd2e00914d1ba1fbb270e3cfcdc60e65330ef5b8d6bd15aff46b
MD5 8bc3c995b7f7ad5b24e537a519b21220
BLAKE2b-256 b833b497fc17f01e957b4adc1ce54c38ef0287bf0bdc07f428caea889ff3cce8

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.7.1.9.dev202303221679303135-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.1.9.dev202303221679303135-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 40910f202c616870aa96e258c4039bc143ab342b931e8115b9a3e7840755e994
MD5 996065cbe376a8e1b43c53f075006c93
BLAKE2b-256 b3c2b1a2f9671d4f7d304099b9bc57fb240996abf1ca081f6d052198389178b1

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.7.1.9.dev202303221679303135-cp39-cp39-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.1.9.dev202303221679303135-cp39-cp39-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 ae42092352bcbab25aeed876793f357405462fca3364795fbcf00d5d06729238
MD5 3d5498b7b690077b1ed6a7b10d3f7415
BLAKE2b-256 feb5da29e6810a60d7a8a4067e59a072adb50def966a18f488a6d40e33249700

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.7.1.9.dev202303221679303135-cp39-cp39-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.1.9.dev202303221679303135-cp39-cp39-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 122949c55ef68d05bc1e3b7356d1fe50881e47b874d7eb430e45dad597ea1095
MD5 b0602a8f11cb7836a515a7a2dd8f7a66
BLAKE2b-256 60910ae8b1e220f9fbdeec55ed3f4ca70b1ba3b6170c3025f0b967e99b93e69d

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.7.1.9.dev202303221679303135-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.1.9.dev202303221679303135-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 9fd2c9c1bbb682472a9a8b021aa8ed628bba4244d7a2fdfec5813cdf2ed57282
MD5 3eafbbf0050331195b00dbcc6e83109b
BLAKE2b-256 8573032066dcd85d94843453e1fad87dfcd027d79ed1266f8f6e460779ee9d28

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.7.1.9.dev202303221679303135-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.1.9.dev202303221679303135-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 ac8c01e6fa968308b26dafbfb348b7e100412b6e71b4c47bb283eeff7a2716c3
MD5 d6fc654956ed6512448be43ba2b1741d
BLAKE2b-256 39109f7ffb573ce7a004c9d4fee2d96a331c704cb1b81cc62c265307e507b52c

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.7.1.9.dev202303221679303135-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.1.9.dev202303221679303135-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 8f0b6992109aa53afc19179b6afd5264dccfd73df689b839821b0ca7f121a50f
MD5 c83b22a0b8243c984e2f242a8c978bc2
BLAKE2b-256 55d31af48d6ea44db0ade5f9dd1b10919a7c0352cb2a93477b244619392d4330

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.7.1.9.dev202303221679303135-cp38-cp38-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.1.9.dev202303221679303135-cp38-cp38-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 bb6cb136c39d4c0856c440d4625f981bd3016e454d6448960cc2d5833d4d8181
MD5 2b43fc3c56468998a1d4ca7656f74dd6
BLAKE2b-256 75967a247280bec43d22dd84a23162a96e4e1f70a6f5398f3dcdbd5a1db6bf15

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.7.1.9.dev202303221679303135-cp38-cp38-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.1.9.dev202303221679303135-cp38-cp38-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 f6c853776927677152b97693bf62ea16459167df0398430c030a71ee05b0aeef
MD5 b61505b311b096b926362e58c0de4700
BLAKE2b-256 e255a384c9b64e2380a923a79ccef4c96aca033f1b4d9a8d0d02b26b64f7a7d1

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.7.1.9.dev202303221679303135-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.1.9.dev202303221679303135-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 4b3e002ba4a9d8892cf6e5d88eb2b1d030026cf9cc92a5c2811a790e6c912e9d
MD5 b81b726f5d7c67def0caf583b94a1f55
BLAKE2b-256 72411c67b7efa0f53cbfe5d95cf342aa9d87289c14a86dd5b4a5c37dfaf9af44

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.7.1.9.dev202303221679303135-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.1.9.dev202303221679303135-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 46c93503094865eed2511ea0ffd39efd33e2369b00234d66a2bff44f2baaea1d
MD5 b82fe55624045ab63ff790f9010ae85e
BLAKE2b-256 b87825b5984a6ac960c726b09bfbb766029100b5c6744820cc02f1ca6081519f

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page