Skip to main content

Bayesian networks and other Probabilistic Graphical Models.

Project description

Description: pyAgrum is a scientific C++ and Python library dedicated to Bayesian Networks and other Probabilistic Graphical Models. It provides a high-level interface to the part of the C++ aGrUM library allowing to create, model, learn, use, calculate with and embed Bayesian Networks and other graphical models. Some specific (python and C++) codes are added in order to simplify and extend the aGrUM API. The module is mainly generated by the SWIG interface generator.

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

pyAgrum_nightly-1.7.1.9.dev202303281679936551-cp311-cp311-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.11 Windows x86-64

pyAgrum_nightly-1.7.1.9.dev202303281679936551-cp311-cp311-macosx_11_0_arm64.whl (4.0 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

pyAgrum_nightly-1.7.1.9.dev202303281679936551-cp311-cp311-macosx_10_9_x86_64.whl (4.4 MB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

pyAgrum_nightly-1.7.1.9.dev202303281679936551-cp310-cp310-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.10 Windows x86-64

pyAgrum_nightly-1.7.1.9.dev202303281679936551-cp310-cp310-macosx_11_0_arm64.whl (4.0 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

pyAgrum_nightly-1.7.1.9.dev202303281679936551-cp310-cp310-macosx_10_9_x86_64.whl (4.4 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

pyAgrum_nightly-1.7.1.9.dev202303281679936551-cp39-cp39-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.9 Windows x86-64

pyAgrum_nightly-1.7.1.9.dev202303281679936551-cp39-cp39-macosx_11_0_arm64.whl (4.0 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

pyAgrum_nightly-1.7.1.9.dev202303281679936551-cp39-cp39-macosx_10_9_x86_64.whl (4.4 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

pyAgrum_nightly-1.7.1.9.dev202303281679936551-cp38-cp38-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.8 Windows x86-64

pyAgrum_nightly-1.7.1.9.dev202303281679936551-cp38-cp38-macosx_11_0_arm64.whl (4.0 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

pyAgrum_nightly-1.7.1.9.dev202303281679936551-cp38-cp38-macosx_10_9_x86_64.whl (4.4 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

File details

Details for the file pyAgrum_nightly-1.7.1.9.dev202303281679936551-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.1.9.dev202303281679936551-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 267bb806d2d46c467f9529d3cad413b62f4909c5719e49d1f855755031aa6ece
MD5 5e497c4b250c73699cb04adcb8258cc6
BLAKE2b-256 d559862a0a5f14194208de8d4b9f2d243393c73773770d8a79e90a4a174b3cbe

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.7.1.9.dev202303281679936551-cp311-cp311-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.1.9.dev202303281679936551-cp311-cp311-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 f302fb5f438dccd305c6291ece7efcbde4e3a9007959507e65191fe0b6210363
MD5 e211a9c8f12e6c627f1d8dcf7bc23b01
BLAKE2b-256 b973aa7fcd43201640e02ac46273d5788d409e22ac1b46d04253e189b56872d5

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.7.1.9.dev202303281679936551-cp311-cp311-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.1.9.dev202303281679936551-cp311-cp311-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 65893fde0743cf257072167b2f0e7d03a12300632d691ba17ebda4eaced42851
MD5 3d44dcbb5fa2bcb04a6fd9cc4fcd13f1
BLAKE2b-256 3122ea50336b69a60d97054a7377a6d39c2daac5347483a962959bc39d02842d

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.7.1.9.dev202303281679936551-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.1.9.dev202303281679936551-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 2375cd5c5af5dfab363864fc59411437de00db38923853c08f10dfc2de515b7e
MD5 e0d87147ffb33caf22c8d89b62bb90bd
BLAKE2b-256 09b9ab1c3a71185d91f88070dce99aa722e5585d7af13d30a55a139de602f6ae

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.7.1.9.dev202303281679936551-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.1.9.dev202303281679936551-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 ef004efa4efcc015136499d1aa20ec1b19c9897f67437acc2a9108114aa319e1
MD5 d08a670eee6ca130bd53a7e0a5f875b5
BLAKE2b-256 46f41741ae61dc03e36bd99a084b414bf37071f5ec247066109924ae2d16b7f0

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.7.1.9.dev202303281679936551-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.1.9.dev202303281679936551-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 3484ebde51c3a766dd19f63bffcbbd143f786a2b7ad14c7b7d7e5ec9f2839a3b
MD5 6029206577f86715adddb966ee9b7fc9
BLAKE2b-256 342e2abed27c5015c96ef1201d60fb7c411346e388bc581730f1b00ee8c30994

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.7.1.9.dev202303281679936551-cp310-cp310-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.1.9.dev202303281679936551-cp310-cp310-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 1fe739726d48df9878f13d80d923f9bd4048ece2e994712be641e290387f6684
MD5 9a1f195fa056a0e2fe45a85ad4d83df9
BLAKE2b-256 42d35eb5fe59d577dc169325a582669a7735f20a94159dd96d06c16cc35ad5e6

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.7.1.9.dev202303281679936551-cp310-cp310-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.1.9.dev202303281679936551-cp310-cp310-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 9800602140ab263d44f3a162e832937dcf177625caf6775fbef394f97b6f326d
MD5 9f8866b986dfa50e557d329bb7a5763c
BLAKE2b-256 bf98af37f5855cb4682145f8ab29e7fa82d3722b15fa63c083230680ea858efe

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.7.1.9.dev202303281679936551-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.1.9.dev202303281679936551-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 e3eae1feebc3338f2c31a254df59267efc4b6aedee1ac74a2569f9ed41c7b527
MD5 15214382686598c70f147e5a5777960b
BLAKE2b-256 97ff86c1e49797805c844ec4a6653ebb2f78a1a336d4cd41726e5bfe10b8bb75

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.7.1.9.dev202303281679936551-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.1.9.dev202303281679936551-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 d1e02aed80e94f033e9e536f863c54b0bf3736558c56be2d14114cdde1dda9df
MD5 c01e165aa4775ce34907efbf3bc1ab0c
BLAKE2b-256 ecf633da4bb5df4bf76afc77a7cade503bc2105fe19d49f043dace53a118eeb4

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.7.1.9.dev202303281679936551-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.1.9.dev202303281679936551-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 27fb45e8d4415acab89dde860d53f58e2e1cdb0a7083a0de3a686b31f7750934
MD5 3acb06276011d611ab69001ec6139328
BLAKE2b-256 26b728a059b11dcda805a52e6099ba996e4a3dd88c218dd95b5853b666224a9b

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.7.1.9.dev202303281679936551-cp39-cp39-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.1.9.dev202303281679936551-cp39-cp39-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 82c87b1e309e1efac72d3be3cc2b1590fb6e5ba54ecc1fa47ead24ed6d56eb4d
MD5 6dda7501035729cac63985e010bc84c9
BLAKE2b-256 2d14cc0915bd921093d23176b148c87119c4644781164fb8304181649a76d9e6

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.7.1.9.dev202303281679936551-cp39-cp39-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.1.9.dev202303281679936551-cp39-cp39-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 64d6cb264fb2e7d63179dd4af94d2050716fe213bddae961b20e94b9af097029
MD5 74c4de72b3ac804c48364f75b073fec4
BLAKE2b-256 0f8d730a4ca04ebb90930fcdb0ff541449fac8eca3d12d2819bfe8b98e43220b

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.7.1.9.dev202303281679936551-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.1.9.dev202303281679936551-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 4d50525bd9717f6d95f9286d96ebf679501895266efb2ad29a83818a63a30237
MD5 22bd84452f2f7dbfea2516897b9004e3
BLAKE2b-256 c96a2076617bc2f3944742ec367a3de7144249498a83465741ccb2a36d60dc96

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.7.1.9.dev202303281679936551-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.1.9.dev202303281679936551-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 eab2a4968833a6d8f6a79eb9c0fcfabc897beef7f1f1330166ab6217f39685f5
MD5 5970ce4cb0fa081101ebb0fbd17dd5e5
BLAKE2b-256 b6663253885ad6e937208c32472dfb28d33b646f02335a8345a5b8609506faec

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.7.1.9.dev202303281679936551-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.1.9.dev202303281679936551-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 a5ec2a07f1e50a6fb55a1b0bc429a2280362a8f093102e41860892fe19e8f44d
MD5 cad5499030a46dfa6a43284902bdab3f
BLAKE2b-256 45402e5975b79af522d82d4902064f12e18dc32b01b1961ccd25ee32dce1cab0

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.7.1.9.dev202303281679936551-cp38-cp38-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.1.9.dev202303281679936551-cp38-cp38-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 15f3e3608764d8a0e198f83a684c26514dd8d899d1a193e57bd8d6c6e92c03d6
MD5 dec7467ee4abaea24ab6a1b1503d2544
BLAKE2b-256 71f3e00a2ed2e909c47dcc75d977a6e444f538d8ed605c15d8f6f0efb5f4c88b

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.7.1.9.dev202303281679936551-cp38-cp38-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.1.9.dev202303281679936551-cp38-cp38-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 6cda4cbbfafe7091d6ca6129037d00ab0957aac6a47db4f0dfca985fea1750e2
MD5 18f054708005b1205d08eec9ac731472
BLAKE2b-256 f079194d66bb6115344bdafe54a242bd766458f4db419533d05366485d4dcbb4

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.7.1.9.dev202303281679936551-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.1.9.dev202303281679936551-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 7eaee041048b110476190efae8720a95c7d194a97660d915ff270b4a60a8265b
MD5 8455ec5b4f6ed3a5acee2743b1ea1474
BLAKE2b-256 2b04fffe3cfabec23c26badb2d0424ed48b2f585459f03294b650b7ebdb8d032

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.7.1.9.dev202303281679936551-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.1.9.dev202303281679936551-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 417c9b9ba1dc413360f32155dbc8587401939f5ef60884e09805e14d47309e8c
MD5 88fbc87615dad2d1886669aab756f368
BLAKE2b-256 9188d4c1966e94e6ff5d43a62322d54d5740f00b91bb182c4e4c643f54b1c5e9

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page