Skip to main content

Bayesian networks and other Probabilistic Graphical Models.

Project description

Description: pyAgrum is a scientific C++ and Python library dedicated to Bayesian Networks and other Probabilistic Graphical Models. It provides a high-level interface to the part of the C++ aGrUM library allowing to create, model, learn, use, calculate with and embed Bayesian Networks and other graphical models. Some specific (python and C++) codes are added in order to simplify and extend the aGrUM API. The module is mainly generated by the SWIG interface generator.

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

pyAgrum_nightly-1.7.1.9.dev202303291679936551-cp311-cp311-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.11 Windows x86-64

pyAgrum_nightly-1.7.1.9.dev202303291679936551-cp311-cp311-macosx_11_0_arm64.whl (4.0 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

pyAgrum_nightly-1.7.1.9.dev202303291679936551-cp311-cp311-macosx_10_9_x86_64.whl (4.4 MB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

pyAgrum_nightly-1.7.1.9.dev202303291679936551-cp310-cp310-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.10 Windows x86-64

pyAgrum_nightly-1.7.1.9.dev202303291679936551-cp310-cp310-macosx_11_0_arm64.whl (4.0 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

pyAgrum_nightly-1.7.1.9.dev202303291679936551-cp310-cp310-macosx_10_9_x86_64.whl (4.4 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

pyAgrum_nightly-1.7.1.9.dev202303291679936551-cp39-cp39-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.9 Windows x86-64

pyAgrum_nightly-1.7.1.9.dev202303291679936551-cp39-cp39-macosx_11_0_arm64.whl (4.0 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

pyAgrum_nightly-1.7.1.9.dev202303291679936551-cp39-cp39-macosx_10_9_x86_64.whl (4.4 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

pyAgrum_nightly-1.7.1.9.dev202303291679936551-cp38-cp38-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.8 Windows x86-64

pyAgrum_nightly-1.7.1.9.dev202303291679936551-cp38-cp38-macosx_11_0_arm64.whl (4.0 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

pyAgrum_nightly-1.7.1.9.dev202303291679936551-cp38-cp38-macosx_10_9_x86_64.whl (4.4 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

File details

Details for the file pyAgrum_nightly-1.7.1.9.dev202303291679936551-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.1.9.dev202303291679936551-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 5c8c7cd0cfaa4c87fe4f63272d1f4681f258c17bdbe238203c294989165b46b4
MD5 a51b18758a021248bfbce43ca10c90df
BLAKE2b-256 d7383d8f19bf80750be5caac055ae4fa39ee3195f6afc67980ae790b444ef144

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.7.1.9.dev202303291679936551-cp311-cp311-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.1.9.dev202303291679936551-cp311-cp311-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 60b777fb780dc08f99390aec37e0361af806e3be7a3beec2905b7c72b9e5055d
MD5 88523c7bc227b9bd178e7d2f773c2791
BLAKE2b-256 6b46495e8fbd492525e0dd27118018795ec65326401b59f63d95d2b1dc934198

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.7.1.9.dev202303291679936551-cp311-cp311-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.1.9.dev202303291679936551-cp311-cp311-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 8fb1c9c8b92528aa658dbafa863bcff3f3d96f89c522232c499431fe62d7396c
MD5 9d33ee177b07a39db4233903ad11f49b
BLAKE2b-256 c138ad919d62467c48c6c3e17f5e2cbf3bc4e5a18bbcbe26b82963052cfa6806

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.7.1.9.dev202303291679936551-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.1.9.dev202303291679936551-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 4932764e698a39c6de5d2d62bb9f152024ea74c4a5932cd844d913da6f386bbc
MD5 866c46ecaca4ade0bed813e84191c274
BLAKE2b-256 3da279438d3b8ee10946adde5d91b6dd5ae7387e07cf61b4c64ded646f8e63e2

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.7.1.9.dev202303291679936551-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.1.9.dev202303291679936551-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 303e89deccb55936e0efcd22f56f1e6bf9b94baedde03e7abe43fc32c426b75a
MD5 8705455873364b102f9db886de331764
BLAKE2b-256 62625ce2ba49bf26824a9f91ebf8c5d7eb7e2e320225db038cf39a2d93bb58b1

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.7.1.9.dev202303291679936551-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.1.9.dev202303291679936551-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 14253b80bb797b55005a7e6562d1a0ebccb02a5eeedd5a56d1466a9d55f6774c
MD5 98023d7e504a41341d255be41f32be15
BLAKE2b-256 7b817c77fb65e76d359be369448193f04f05c4562650ab39f9a2d213ee10416d

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.7.1.9.dev202303291679936551-cp310-cp310-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.1.9.dev202303291679936551-cp310-cp310-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 82c43741db5d1b081453e1a7939d56a9675a7856c42383c88592052d4c088e59
MD5 41fe217992fc13861f63bcdcc1399e10
BLAKE2b-256 4f9cfd40419d89007e8fc86f9cd637b994cac2c44c9c625d58425ada82e91ee3

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.7.1.9.dev202303291679936551-cp310-cp310-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.1.9.dev202303291679936551-cp310-cp310-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 4f79c65f07827fe56d45921dd8f6fce02bedcd97ebbbbba8842197043a8fb2ef
MD5 2ceb5e0bdbd772acf3e137d86eca8d6d
BLAKE2b-256 cce700e55bc0b8f04277c9b1b7d7ee37ec64aab316c799ca3f303198d5e04cd0

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.7.1.9.dev202303291679936551-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.1.9.dev202303291679936551-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 b6287d22c0b2d66bb80bde4b81cc60291acf4af5a1daae41754636b50469a4c2
MD5 6399aceb4f57e3d384e151724755fbc0
BLAKE2b-256 a11ab17e3aa8b29a6fa6edd1a3ca0e2f527ed136979704a75b334d9358f15ec9

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.7.1.9.dev202303291679936551-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.1.9.dev202303291679936551-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 bd52287c59d9acedd4e8c1ebea2aba614d773acb0f4c9029a64758d489283256
MD5 d3d3e592ddeae55dfd710c4e3513329c
BLAKE2b-256 4b56150895ed29096a15c63d35a3a3d77c7913750600c7004795b5d8e4e7910c

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.7.1.9.dev202303291679936551-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.1.9.dev202303291679936551-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 37e07c5393e6739afe5a56dcae871442c2f023a5ae812b370b879b04afaecc60
MD5 775aab1b3058b49b8a09f9146c84a416
BLAKE2b-256 d829ec97098799396162772e65f630a31bcf91ec066f7f6262daaa1825a20c7d

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.7.1.9.dev202303291679936551-cp39-cp39-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.1.9.dev202303291679936551-cp39-cp39-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 8f91d19da56c04639110785aeb0efd4035aaea31273983813ff9caad8b82b02d
MD5 e5f5cbaadc6cfc20319584c27d2ae13f
BLAKE2b-256 962175c4f260e94fd46412902bdce5330482c65773efdb4486ab827ce381f4d5

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.7.1.9.dev202303291679936551-cp39-cp39-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.1.9.dev202303291679936551-cp39-cp39-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 5545ae94f1bd30072da049b35ede120b25c484861e555b608ff9d47bf8053736
MD5 2c0c38768d83394484d74c9e9674e676
BLAKE2b-256 0e158fb8627c4cadd0fc320be063095aa9c6f405bdbe7eca559501ac43ce4a8b

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.7.1.9.dev202303291679936551-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.1.9.dev202303291679936551-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 628459a2eeb1b01c8ffdd7e2da18be26a0032cc5015ec3288c8c9382f6ad3da5
MD5 6e313026e42ad2f380c7fccae2255978
BLAKE2b-256 aa210c11f196fb81db068eaeaf9c66fc021dd522704808b9e82a69af6f2cff3e

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.7.1.9.dev202303291679936551-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.1.9.dev202303291679936551-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 ad08f728c00e9f0c38ae54fcd639469bc48201251e785f191c4fc8f8eb874cff
MD5 2f46ecd4bf617e63df41802feb5e9f4f
BLAKE2b-256 720036d29b2d031cbd4ca29cc27c859a50beefd192dce955de9675b99dc75cdb

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.7.1.9.dev202303291679936551-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.1.9.dev202303291679936551-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 3a5dbaf116247bc5b76a1a6bcbd4dd602a32f3cc0a18e69daa8b4faf9346e912
MD5 515992bc6b7afd9775dc4ef13bd16074
BLAKE2b-256 1089216757495a6030420d6f670d7eedfd11677c2d3319c4e017e567b091c977

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.7.1.9.dev202303291679936551-cp38-cp38-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.1.9.dev202303291679936551-cp38-cp38-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 43f86d1e481cf08fccc6442a13fd2aa824b6816e541c87295365dcc39d1a59f2
MD5 ecac7ef455990366c090a922b4067529
BLAKE2b-256 e9ea25bba70ed9e2a6d8406b6f702001dcc722b3e07fe4fef370b888978891b1

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.7.1.9.dev202303291679936551-cp38-cp38-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.1.9.dev202303291679936551-cp38-cp38-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 66d0cb13948ae663457d81d3eb3cb7903708f13616f91ecd197cdd2a7d037a6f
MD5 45dcc264f4ead7b5bf055c8af11b482c
BLAKE2b-256 f43ee0950d15e6031d642d8280d07539c80e8c346e1c2b8d6086afe2391fd24b

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.7.1.9.dev202303291679936551-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.1.9.dev202303291679936551-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 efbf6edf4b15c1743f4fb10e684f32af6e3752bd48a43d0cbab667d671fa7f88
MD5 db26a29a816c35455935245ea5d8a957
BLAKE2b-256 313a9fea1f2d0904d712d3d57d7028f6927898b68885a7c28e1cb4584bc88008

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.7.1.9.dev202303291679936551-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.1.9.dev202303291679936551-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 7cee85b934c974513995746a39e4f5de437cae1b3091fdde0f9c576972cb2081
MD5 d8159adb28e028ecd39400e3c90c1681
BLAKE2b-256 970e340e563b4606bab01937a4e93bfb8bf03b4ae534242a3d58cd2f361fa7e1

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page