Skip to main content

Bayesian networks and other Probabilistic Graphical Models.

Project description

Description: pyAgrum is a scientific C++ and Python library dedicated to Bayesian Networks and other Probabilistic Graphical Models. It provides a high-level interface to the part of the C++ aGrUM library allowing to create, model, learn, use, calculate with and embed Bayesian Networks and other graphical models. Some specific (python and C++) codes are added in order to simplify and extend the aGrUM API. The module is mainly generated by the SWIG interface generator.

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

pyAgrum_nightly-1.7.1.9.dev202303301680071446-cp311-cp311-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.11 Windows x86-64

pyAgrum_nightly-1.7.1.9.dev202303301680071446-cp311-cp311-macosx_11_0_arm64.whl (4.0 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

pyAgrum_nightly-1.7.1.9.dev202303301680071446-cp311-cp311-macosx_10_9_x86_64.whl (4.4 MB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

pyAgrum_nightly-1.7.1.9.dev202303301680071446-cp310-cp310-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.10 Windows x86-64

pyAgrum_nightly-1.7.1.9.dev202303301680071446-cp310-cp310-macosx_11_0_arm64.whl (4.0 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

pyAgrum_nightly-1.7.1.9.dev202303301680071446-cp310-cp310-macosx_10_9_x86_64.whl (4.4 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

pyAgrum_nightly-1.7.1.9.dev202303301680071446-cp39-cp39-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.9 Windows x86-64

pyAgrum_nightly-1.7.1.9.dev202303301680071446-cp39-cp39-macosx_11_0_arm64.whl (4.0 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

pyAgrum_nightly-1.7.1.9.dev202303301680071446-cp39-cp39-macosx_10_9_x86_64.whl (4.4 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

pyAgrum_nightly-1.7.1.9.dev202303301680071446-cp38-cp38-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.8 Windows x86-64

pyAgrum_nightly-1.7.1.9.dev202303301680071446-cp38-cp38-macosx_11_0_arm64.whl (4.0 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

pyAgrum_nightly-1.7.1.9.dev202303301680071446-cp38-cp38-macosx_10_9_x86_64.whl (4.4 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

File details

Details for the file pyAgrum_nightly-1.7.1.9.dev202303301680071446-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.1.9.dev202303301680071446-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 2ca4ba689ee67d4f4d50c1283f4f7badc91f919c8f8625085fa66b9832b5ad40
MD5 9388e630788175f56117f6e2f29674ef
BLAKE2b-256 e95c1bbfcb0bac88b392a2c3b60dee1dc74de49f02715a2ff6a32c3c25f76d53

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.7.1.9.dev202303301680071446-cp311-cp311-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.1.9.dev202303301680071446-cp311-cp311-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 cf522c238fef5e3bd3cf049ff4802e1139e8f5b18c0fc844f0607edf0ea9ee98
MD5 ea44f7a01cb46612011764b0f675ee30
BLAKE2b-256 a7515f9eac55b07e3f9e510fef0cda5f510d84cda3811a89bf49ea8a0c0ebc78

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.7.1.9.dev202303301680071446-cp311-cp311-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.1.9.dev202303301680071446-cp311-cp311-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 f56be40a7ad254513b16fb9be4b00606917def1348d9cb648b0277583e291a5c
MD5 8c1d901a97e9929c36367c4548e5584f
BLAKE2b-256 6e452216ca8d0cf758fbc8c0eb8010c2caf96b9af2e53de8bbc0aa9d2fe24ec0

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.7.1.9.dev202303301680071446-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.1.9.dev202303301680071446-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 f9543eb1ab5447cdfc803a8905f955db0ac443f0e0d353b3580646f329fb318d
MD5 fdb431d196dbdd01c843f9119a0a9723
BLAKE2b-256 fe81de7ec10ddcaea78e0b901a231564c3d9aa91ae3d69b5bf7ad097e91da581

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.7.1.9.dev202303301680071446-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.1.9.dev202303301680071446-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 8801f00c9df17e882d536a87a1c1272679cee99dbfb6fc4e2cd9462b07457558
MD5 1d02fc55902068469e7622a434d7053f
BLAKE2b-256 d96e35b7c2b3e230c778be46955c7e6bcc6559464c1db198188e12af176ab3bd

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.7.1.9.dev202303301680071446-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.1.9.dev202303301680071446-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 d9160913e750722ecb39513f6066579348b88d927f2311c6da003e35b4b9dbfe
MD5 1801ab6aa69f3d8a59d76b3ba5e90d39
BLAKE2b-256 e2ef6de941641cf06127e30109bdd89ef71b8463ba9f035a5ed68abc8c968659

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.7.1.9.dev202303301680071446-cp310-cp310-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.1.9.dev202303301680071446-cp310-cp310-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 f38170f11bf0f60d90691af7a2a05328a86c9317f35d7d4153d34d93035473b4
MD5 c82003c10a04f1b9dc3b71b8b8a17107
BLAKE2b-256 913b5e91fec9e6cab273e405ca62c702fa838184bb7ddf06f05a001b8e9667a6

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.7.1.9.dev202303301680071446-cp310-cp310-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.1.9.dev202303301680071446-cp310-cp310-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 b4e1624e73f6b4c2de62088744028c1472739e71fa0df7bc66e34149e079d6ce
MD5 c84fbb2d67c850daf1d1309c4a22a10a
BLAKE2b-256 345b2e170c76610bf5390d8e143912b0344e5fb7c7a53dcb6358fcb83d2d549c

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.7.1.9.dev202303301680071446-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.1.9.dev202303301680071446-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 63f6dc3dd46f967edc32d1676c2074f06923dd3e5ad95a4481e39b8a7f327fc0
MD5 7ed5af258de3ae2ebc241055a56e4853
BLAKE2b-256 e85700d35ce3b5965ea469236cb18541e9d38f5bf2f2d89e4ef74538304dd870

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.7.1.9.dev202303301680071446-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.1.9.dev202303301680071446-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 c9e382d749303d4bc518cf50642efe4df30f58ee515299068ba1cc67b57391f8
MD5 344c2f45f5b55169c62ba57755dea074
BLAKE2b-256 a7f99a98aea85016699654630860584412087f83401c85a2d54fecb2f3f59e78

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.7.1.9.dev202303301680071446-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.1.9.dev202303301680071446-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 24148d309864633e758b688291a5b47e2f61d460448e3eb171b64bfa838b30dc
MD5 2132c8be946db8dc1b21feedc74fd6e6
BLAKE2b-256 6c3ae0701ecb69ed075020b7291f4a3aa7e8ec5bf55479b605a5fa1e966123c2

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.7.1.9.dev202303301680071446-cp39-cp39-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.1.9.dev202303301680071446-cp39-cp39-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 a2e3008e4d9093a3bcc117eacf039ac7ca31e3c09444049bab17d0fed671ac3d
MD5 95844b256836eeac36d3e126473955a5
BLAKE2b-256 8bce2d92f2d850e5bf530cd0c2fec992a6baa25a761b979699e716887ac1f640

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.7.1.9.dev202303301680071446-cp39-cp39-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.1.9.dev202303301680071446-cp39-cp39-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 c29ca9404f4cbdba9e57c0e05de6226f88a1da238aa896552069e581a02308f7
MD5 43988dc6478c545f84ee75caea295922
BLAKE2b-256 dd6b4ebbd812d17806df10018e85a2a260ae3cbb162cd93db4069a04ae799e0a

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.7.1.9.dev202303301680071446-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.1.9.dev202303301680071446-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 d989b6dcea5c59ab98797a40fddfc8a2c16451144a8b174ff8d19a8be799f525
MD5 e8d7e32b52d41416e766de142010828b
BLAKE2b-256 df2da81b9073286e085af844ac97d1d126498b320439f8c205f7998216ad758c

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.7.1.9.dev202303301680071446-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.1.9.dev202303301680071446-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 1317c42c6ca1590c2c612dc1f8592c51260cc0e9ac59b4e10888a4a0fb22955c
MD5 79eaf6eeb8d75446df21a57d345e18db
BLAKE2b-256 dc33ba61ec1ad7c6ab5182f980ca444831f56dcc44ac5efdfd1c78ca81148751

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.7.1.9.dev202303301680071446-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.1.9.dev202303301680071446-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 5843dfa127cf7497f594970021259ccf0130f5676f10b9e5d995f76258f656d3
MD5 2f1f2fe38ea768fb1ad4668f35ce20cf
BLAKE2b-256 43ee163459f2d8f6fb8efc8a5a528399372c16b4c0d3cc37d5b76bee29b466ad

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.7.1.9.dev202303301680071446-cp38-cp38-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.1.9.dev202303301680071446-cp38-cp38-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 268261dca7ae8ad73863d8b7f5e71c80f58c25da8ffc8f9934efaaaf6ecd45d3
MD5 acb0dab49d52c100b9f6f481d16cfa05
BLAKE2b-256 3a1601674d60fc464cdc28e04c7ba49641fe14e9884cab37c8a42f46a4518c08

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.7.1.9.dev202303301680071446-cp38-cp38-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.1.9.dev202303301680071446-cp38-cp38-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 4dfc5b73b394eefd2870c60779e45af5d9b7ec8a27c96585199c05cf16b8ff81
MD5 dfab2c5c6d3877099929b200e78f636c
BLAKE2b-256 b4c91a6518b1a9db898eaad4b5c69efa59dbaa41a91968b5d8d59e6bfee54938

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.7.1.9.dev202303301680071446-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.1.9.dev202303301680071446-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 1a561bcc75b2d82cb7abe1a77d77ccf7e396573efd5b3237ce89a23ab2a4c321
MD5 7b9758135a31796e868525a0598733f5
BLAKE2b-256 db8885e04ea0f870154c7004e1b9dd282dc23a72e38fb2674bf8c47e9f2c4ca2

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.7.1.9.dev202303301680071446-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.1.9.dev202303301680071446-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 ff7b22ab6e3fd9fd1865ee384f6a9c967179043cdfa0cb30b60aa93a3b262199
MD5 3035ae7db4d7b1f1eddded7ccef1e680
BLAKE2b-256 e27190f25cebe0f5f97418c8d0b413a7c0501dd9d538c788cf57235a69cbf8c7

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page