Skip to main content

Bayesian networks and other Probabilistic Graphical Models.

Project description

Description: pyAgrum is a scientific C++ and Python library dedicated to Bayesian Networks and other Probabilistic Graphical Models. It provides a high-level interface to the part of the C++ aGrUM library allowing to create, model, learn, use, calculate with and embed Bayesian Networks and other graphical models. Some specific (python and C++) codes are added in order to simplify and extend the aGrUM API. The module is mainly generated by the SWIG interface generator.

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

pyAgrum_nightly-1.7.1.9.dev202304011680071446-cp311-cp311-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.11 Windows x86-64

pyAgrum_nightly-1.7.1.9.dev202304011680071446-cp311-cp311-macosx_11_0_arm64.whl (4.0 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

pyAgrum_nightly-1.7.1.9.dev202304011680071446-cp311-cp311-macosx_10_9_x86_64.whl (4.4 MB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

pyAgrum_nightly-1.7.1.9.dev202304011680071446-cp310-cp310-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.10 Windows x86-64

pyAgrum_nightly-1.7.1.9.dev202304011680071446-cp310-cp310-macosx_11_0_arm64.whl (4.0 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

pyAgrum_nightly-1.7.1.9.dev202304011680071446-cp310-cp310-macosx_10_9_x86_64.whl (4.4 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

pyAgrum_nightly-1.7.1.9.dev202304011680071446-cp39-cp39-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.9 Windows x86-64

pyAgrum_nightly-1.7.1.9.dev202304011680071446-cp39-cp39-macosx_11_0_arm64.whl (4.0 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

pyAgrum_nightly-1.7.1.9.dev202304011680071446-cp39-cp39-macosx_10_9_x86_64.whl (4.4 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

pyAgrum_nightly-1.7.1.9.dev202304011680071446-cp38-cp38-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.8 Windows x86-64

pyAgrum_nightly-1.7.1.9.dev202304011680071446-cp38-cp38-macosx_11_0_arm64.whl (4.0 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

pyAgrum_nightly-1.7.1.9.dev202304011680071446-cp38-cp38-macosx_10_9_x86_64.whl (4.4 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

File details

Details for the file pyAgrum_nightly-1.7.1.9.dev202304011680071446-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.1.9.dev202304011680071446-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 811e9df4fbf778ddcfc0aa4713e990da179495177c8d9d83b4406f187233d821
MD5 24819ebd5609b73c3ee27336d8cf1671
BLAKE2b-256 5e1c0c9b6efce4496358e9a578df3a8637f26ba3d44b79b09a6eab3b690f0a68

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.7.1.9.dev202304011680071446-cp311-cp311-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.1.9.dev202304011680071446-cp311-cp311-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 c8478fbe49b8f8d3916b12b9280e7c560c6604b91a48536a07e6bed1274cbeea
MD5 35eea1b3596cf3758ab06d355ef2d8d9
BLAKE2b-256 aeb5bc7edcd5ddc0fc863019fc93c88bb8bd0a2431db9549f9c3cebb402c1582

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.7.1.9.dev202304011680071446-cp311-cp311-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.1.9.dev202304011680071446-cp311-cp311-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 330067440c1e2ef53584a119eaa52467563f7ee95e19f7e63a309a9bdee9bd64
MD5 47c00f81a44ef0548458f3a93964231a
BLAKE2b-256 d87a5bc50aac28c563f518abd30bf53ae80bf1b93d5d1adcae874ef21ad3e827

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.7.1.9.dev202304011680071446-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.1.9.dev202304011680071446-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 6b8bf14c82cd6b5ce0e636066296b82f85eaed4476301f7a61246e548ea77be3
MD5 89769a5bb02a117f9535c6f8cd359692
BLAKE2b-256 b7956d137ac5c7722ac2699049e1c17de45aa1fe01dfb97a725b7cf74a9f22f8

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.7.1.9.dev202304011680071446-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.1.9.dev202304011680071446-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 377c8731dbab743642c5765fbe8a50d4f3377798c53ca2f2400031cb14b44035
MD5 10151f20236a6cc16544fa67006b7ecd
BLAKE2b-256 3315b67f808f4704fbfcaf23b518973a04e2db2761df599db963f2e6b848adae

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.7.1.9.dev202304011680071446-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.1.9.dev202304011680071446-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 091e9bead9ab4c99c2cce9f45eb8dbdfda1778c6ef719813dc750324f8c79e27
MD5 542f86599a00fa4a14698a15b5d012cd
BLAKE2b-256 5c3697517ba37f67f0502ceca76c13e3e5b809c8d5aecabc345f7463051e2e44

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.7.1.9.dev202304011680071446-cp310-cp310-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.1.9.dev202304011680071446-cp310-cp310-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 f118d9def926bb15abe55940b3c184ef37801fe6e489d4c631de05a7610aedf7
MD5 95ebf5ffcb358b1157a1beb9c34787d5
BLAKE2b-256 06bdbf8410301f5e191c4f9df726091d16257d2cd9b34706f118760a300858ea

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.7.1.9.dev202304011680071446-cp310-cp310-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.1.9.dev202304011680071446-cp310-cp310-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 b2f949f05fde5fb9756313bc4fe5da44e8aa1da5e3174ee174dbe4577af333b7
MD5 2d626f49a7fbcd7ab63cb1b180b6f46b
BLAKE2b-256 0e56da46998a55382f4c62a18dd1d582f32062df363f936520612a4c79087847

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.7.1.9.dev202304011680071446-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.1.9.dev202304011680071446-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 e1ce58584c2665f55476b61dbf4ac1e5a8af038aaa65688fdc7c20b1bfa2beba
MD5 a02d9810ac670990c4d83e064baf323e
BLAKE2b-256 110e93e877bb7c6ee1313831dc699491b4700c8343dada4d0ea8a1d1ffed6561

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.7.1.9.dev202304011680071446-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.1.9.dev202304011680071446-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 ae3971b454895779851867baed1ecc2cb9ee556c2ce51249b3af3164f279b34b
MD5 f2712c52873cc5f9d462493a8f8d87ad
BLAKE2b-256 6c7d081dff5e9e01dafce47b270bc93ae385201b402968d260bf41f6df9dc537

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.7.1.9.dev202304011680071446-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.1.9.dev202304011680071446-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 ec3058fa2f5b828ab5fa05ec38694c12e6ada0d7a6c9a056e73abf53d0e13d41
MD5 7edc56699dd6cc94a6ae7d85de180979
BLAKE2b-256 7c04086d3f85c1827956dd53919440a4f3a57ec05a03fbc7a109a7a3a8cb4508

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.7.1.9.dev202304011680071446-cp39-cp39-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.1.9.dev202304011680071446-cp39-cp39-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 66393c6774a4df4b7055a5ad8aede915ce73f563622d3021a56270de94618ed8
MD5 6465295d19a8ac4c2c335b457767e32b
BLAKE2b-256 564069b23ae956af54b4c185aa7e0ed61acf849fddd30ba3a089706554ffa8c4

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.7.1.9.dev202304011680071446-cp39-cp39-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.1.9.dev202304011680071446-cp39-cp39-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 42f6bfd9f2b27cdba53047acb98892a1df39cd770b4f5f580bf009a0681cc063
MD5 fc662c5309da1e97d8575f2f2e92db65
BLAKE2b-256 d9e55a059bab67c7d9edcd0344748d2648801409707fe3ea2aa573a9028d0a7f

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.7.1.9.dev202304011680071446-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.1.9.dev202304011680071446-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 1bb526afa1aed6786da3795e7f9a1c351a6ef49433f3ee268668e018472aeadf
MD5 c02630ee710d4420563cab77cb5bf828
BLAKE2b-256 b12bc057afd12c46ecb7564985acac34c83b776f0e7cef45aa2f9706e7ccd080

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.7.1.9.dev202304011680071446-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.1.9.dev202304011680071446-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 89564b6edf0d5d7bbd00d69c67a1c5050bb77afd1882fc23b16f1aaf27c5f3b1
MD5 452c6021466ee3e5a28a41253553c304
BLAKE2b-256 bcae1c7001af850d4389ac005a5c2c2e7f6085b218bc861255fc1a112a023827

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.7.1.9.dev202304011680071446-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.1.9.dev202304011680071446-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 68a759de87be5408b93c937a13e85a4c375b9e7bb418b898b153438cbc9a197b
MD5 e8387a16aab9b02111cda7c781aa5b08
BLAKE2b-256 07b3651db1b080823f94ae5fc270aa911d3ea34912fe1f07887b92c47a41dfb0

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.7.1.9.dev202304011680071446-cp38-cp38-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.1.9.dev202304011680071446-cp38-cp38-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 8d3a5dc1689ae8c633ba90653c40aa3d0941918b575a594e2d932923820d4309
MD5 729f3467a7f1e129eaccb475c3e8d9e3
BLAKE2b-256 f7aeb0ca2ff06765266d18e159655d38369ff7d230bc9dedc4ed978e2e5a861b

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.7.1.9.dev202304011680071446-cp38-cp38-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.1.9.dev202304011680071446-cp38-cp38-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 cccfa4a83b4ecbff2859b336c1d4d8bd517fd321a3962716f2968b59f5fc8120
MD5 8d31cfc4ddc9c4e55b8ffd1862cc4e5f
BLAKE2b-256 509f0acc6915eb0da85aca4812fdcb85bc8456ce705eee2c691b3e892f79c7d3

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.7.1.9.dev202304011680071446-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.1.9.dev202304011680071446-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 b600cf08bc473133eabb56f793b6168721b5aaeaf4fd81ea12d2eb571e9696e6
MD5 d530be3547da2fe6bb9225522569817a
BLAKE2b-256 7f742927afff6181500146eb80ed6a04b7b60c6e6e1e941aff0ae57a9f970373

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.7.1.9.dev202304011680071446-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.1.9.dev202304011680071446-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 d3dfa4449748c9cbcbecb62619ffea32d3af55aa828376e0286fc25c5c25677c
MD5 0c36b5cf782dedadde1046659b99f4c1
BLAKE2b-256 fccd465b77f09ba3b97d17c78efc9fa736380b411d930f6066a6b3a0ef5dfab6

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page