Skip to main content

Bayesian networks and other Probabilistic Graphical Models.

Project description

Description: pyAgrum is a scientific C++ and Python library dedicated to Bayesian Networks and other Probabilistic Graphical Models. It provides a high-level interface to the part of the C++ aGrUM library allowing to create, model, learn, use, calculate with and embed Bayesian Networks and other graphical models. Some specific (python and C++) codes are added in order to simplify and extend the aGrUM API. The module is mainly generated by the SWIG interface generator.

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

pyAgrum_nightly-1.7.1.9.dev202304021680071446-cp311-cp311-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.11 Windows x86-64

pyAgrum_nightly-1.7.1.9.dev202304021680071446-cp311-cp311-macosx_11_0_arm64.whl (4.0 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

pyAgrum_nightly-1.7.1.9.dev202304021680071446-cp311-cp311-macosx_10_9_x86_64.whl (4.4 MB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

pyAgrum_nightly-1.7.1.9.dev202304021680071446-cp310-cp310-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.10 Windows x86-64

pyAgrum_nightly-1.7.1.9.dev202304021680071446-cp310-cp310-macosx_11_0_arm64.whl (4.0 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

pyAgrum_nightly-1.7.1.9.dev202304021680071446-cp310-cp310-macosx_10_9_x86_64.whl (4.4 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

pyAgrum_nightly-1.7.1.9.dev202304021680071446-cp39-cp39-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.9 Windows x86-64

pyAgrum_nightly-1.7.1.9.dev202304021680071446-cp39-cp39-macosx_11_0_arm64.whl (4.0 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

pyAgrum_nightly-1.7.1.9.dev202304021680071446-cp39-cp39-macosx_10_9_x86_64.whl (4.4 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

pyAgrum_nightly-1.7.1.9.dev202304021680071446-cp38-cp38-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.8 Windows x86-64

pyAgrum_nightly-1.7.1.9.dev202304021680071446-cp38-cp38-macosx_11_0_arm64.whl (4.0 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

pyAgrum_nightly-1.7.1.9.dev202304021680071446-cp38-cp38-macosx_10_9_x86_64.whl (4.4 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

File details

Details for the file pyAgrum_nightly-1.7.1.9.dev202304021680071446-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.1.9.dev202304021680071446-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 3ae318ea86e0ea17bf3b4a4940c8181dd41cff7f3e3118aec9697f6df063a8d5
MD5 d04c927c85cee23e229fe4d35f55ddac
BLAKE2b-256 9b8592897f69d916a36bd01ce42f8fb22b32d2595e6c4acad93cae356485c734

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.7.1.9.dev202304021680071446-cp311-cp311-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.1.9.dev202304021680071446-cp311-cp311-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 e2994c55e0967700d47df830286b60a9850f96d294114578003201207be7f6ec
MD5 9b6fa4ad50496662fb62db982b9632a8
BLAKE2b-256 3291d60be627568d8c00bdb3d323e9775084e6ff29e90d61f2f3c3003442fba1

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.7.1.9.dev202304021680071446-cp311-cp311-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.1.9.dev202304021680071446-cp311-cp311-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 802c016519104ecd2e1279b42dc76a309897bd01d46b109576e71b033063c7a2
MD5 ac91b06856e963492b0cd819d49678be
BLAKE2b-256 d8ff4d10a22b2883c9663e853e71ca25da62391cddd03445055b59874431c5f8

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.7.1.9.dev202304021680071446-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.1.9.dev202304021680071446-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 d05846993c8329135b16a18f2a730be10ff1ee2ca045cff9fb8f720d98e2e24c
MD5 8c40a190fc22965f65e72fdf531715bd
BLAKE2b-256 681ddb3db575d47a3b30cbfb0424fa5c27388d1a9899a02c11911465bdce9425

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.7.1.9.dev202304021680071446-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.1.9.dev202304021680071446-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 6d8386beb6d6fdf7f28d57c284fd101d0ec07ca43ed5febf3076637201560777
MD5 721c5167f3deb73b48341d4d031b2409
BLAKE2b-256 081b77fa8f1c04a952b6e06c0e37187d38dda055e898ac1973825e5dad4574a2

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.7.1.9.dev202304021680071446-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.1.9.dev202304021680071446-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 dfb5d37a68de3f24797c5c2ca40cd1ff09ce1fe41996838e015af8517dbe8e5b
MD5 ce19b568dfbbf5615d19f5de4c3a8fed
BLAKE2b-256 42f7079dab41118f4dbd579282b964df7ad545d89942cb5bb108834c0c861fc4

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.7.1.9.dev202304021680071446-cp310-cp310-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.1.9.dev202304021680071446-cp310-cp310-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 20328dfb585839cc6111cdba404ec92dd55421be16fa71d58c8b87f757d0971b
MD5 973fe1d58f39783136088ab2a66789dc
BLAKE2b-256 0a16d5a9b075d7d48190d1548f257a8dcbfdaf439456ee909244d7bd8535b312

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.7.1.9.dev202304021680071446-cp310-cp310-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.1.9.dev202304021680071446-cp310-cp310-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 7c36fc63ba278d23cc976a378d17f1ba85cca7e9d29e9a699206b8df452b4c40
MD5 ae92b86bfd403a528c9112554d1143d1
BLAKE2b-256 3bb06dacffa51b39f437705981688dde935718b3e6e3d51c6b8f4246fdf77c7b

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.7.1.9.dev202304021680071446-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.1.9.dev202304021680071446-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 856c8833b9bb9e60df3b204d3a865d2de41b10285a8870dd60c3e3ad26bc49a5
MD5 7f474c4335f549108395d84067e34ac9
BLAKE2b-256 d451a7c1dd7aebf9fc8e140071671d423df37ebefbb93c36b5e1bc4ab6d73ea9

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.7.1.9.dev202304021680071446-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.1.9.dev202304021680071446-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 6a8b22e2c4e5dd347e955bb8e464b7151b7569924437b552ec7e3d08af998a1e
MD5 e8cdb681a1fc3733a1988e3bce50f251
BLAKE2b-256 d4754c68ad1601c556a7b073c34a21e8f1857268ed09c8ccfaacd60e29654340

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.7.1.9.dev202304021680071446-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.1.9.dev202304021680071446-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 b5bca47c85956a462fbd0dfb16e5e83f1cc4a1ae33f0feb14caf56373ff794e9
MD5 ac51c11a91314da8b1b4daa64a49d567
BLAKE2b-256 002c8e3ecb9909517bd35578cc0223ab98520bbf7297f4a2310cbe4b00ad58c5

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.7.1.9.dev202304021680071446-cp39-cp39-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.1.9.dev202304021680071446-cp39-cp39-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 24997fe2caf6b11455cb495338a09028669c12aa47b60c868a9e5d14a5bcb5bc
MD5 835dc76656029081cb4667debe4fe714
BLAKE2b-256 ee913b4096ce287963cedc44726a56316f2930e507711944b19fcfa812581705

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.7.1.9.dev202304021680071446-cp39-cp39-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.1.9.dev202304021680071446-cp39-cp39-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 b28d118c8ced1dfdbb47901e41ebbbf15eba5a78600ed7503f2caa1ff64fb8e8
MD5 234accdc9579d2a64fd0fe773ecb2079
BLAKE2b-256 f75807a5f2b8efedf738f8b6f55009bf56a93d0c3eb0c73f7547a796b0f7af57

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.7.1.9.dev202304021680071446-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.1.9.dev202304021680071446-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 573e3ca2efd1e8073eca914706bfb20f6b1b036beded3d63ec6e9b1049edbf1d
MD5 17d42e55450bc246934d8aa50f02b2ca
BLAKE2b-256 b5f7e47d111212fd0fb30170358d03d20bca30affc515b73d18443fcf7200fbb

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.7.1.9.dev202304021680071446-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.1.9.dev202304021680071446-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 31abe71822681de962c126d95f9572f82ccf0798c37ff3b3e9f547c727f63d27
MD5 836ed8f7408afed0ece396e359c0e48b
BLAKE2b-256 a1184a2986b9c2aeb3db0cf92c1a81e33292a7dbcd7f89704c57a8249baa72eb

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.7.1.9.dev202304021680071446-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.1.9.dev202304021680071446-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 b73e01145580e815f87b627f0e538c74b443f5e6cb38ad7d00a6ed092990df2d
MD5 03e24436fe2cea2fd1734712fac42eab
BLAKE2b-256 3b009f652656788008f68c337aba743360490df65ea5d086d373495901927dcc

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.7.1.9.dev202304021680071446-cp38-cp38-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.1.9.dev202304021680071446-cp38-cp38-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 5ec7142a6752f1cf508378f97e2edb2980f78714e6be3bb9e259705863a32267
MD5 48c7d497bbd1fae0a8816f1ebaa9296f
BLAKE2b-256 956be58d7e2c108ba556f99b8bec889558483a228d032039d9e09debc11a2126

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.7.1.9.dev202304021680071446-cp38-cp38-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.1.9.dev202304021680071446-cp38-cp38-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 2b789ae932615e64d185038b38ce2a0a50a21a89ebc386efcc1f80c0149eae4d
MD5 b6072e3b5daa2f6eb47ceaa65d91c303
BLAKE2b-256 197ee4d032badec43d7c3505e3dde4e661f92bfe7d1cf24df0cef96f1d9683b4

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.7.1.9.dev202304021680071446-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.1.9.dev202304021680071446-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 e95641f92f13c6f13be980b259961cfb8148f023473706ed3f5a7708a9ad486d
MD5 ab1b2271d5efb65b1abe6bda04a3f4b0
BLAKE2b-256 8082d5306ce0973721bb3a6cdac8963be197cef3ff30dda747cbb1dff3e0effa

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.7.1.9.dev202304021680071446-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.1.9.dev202304021680071446-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 3f03565c1c25b3d65753c6feff9c47ab2afb8be972d4358b54b72b55a5240deb
MD5 6052a772305f247bed3de71b01414a53
BLAKE2b-256 81c7c430a40a181e77a30117f01f5cf1f705d108e2ce33e93fcf0acdc65988bc

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page