Skip to main content

Bayesian networks and other Probabilistic Graphical Models.

Project description

Description: pyAgrum is a scientific C++ and Python library dedicated to Bayesian Networks and other Probabilistic Graphical Models. It provides a high-level interface to the part of the C++ aGrUM library allowing to create, model, learn, use, calculate with and embed Bayesian Networks and other graphical models. Some specific (python and C++) codes are added in order to simplify and extend the aGrUM API. The module is mainly generated by the SWIG interface generator.

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

pyAgrum_nightly-1.7.1.9.dev202304031680456188-cp311-cp311-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.11 Windows x86-64

pyAgrum_nightly-1.7.1.9.dev202304031680456188-cp311-cp311-macosx_11_0_arm64.whl (4.0 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

pyAgrum_nightly-1.7.1.9.dev202304031680456188-cp311-cp311-macosx_10_9_x86_64.whl (4.4 MB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

pyAgrum_nightly-1.7.1.9.dev202304031680456188-cp310-cp310-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.10 Windows x86-64

pyAgrum_nightly-1.7.1.9.dev202304031680456188-cp310-cp310-macosx_11_0_arm64.whl (4.0 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

pyAgrum_nightly-1.7.1.9.dev202304031680456188-cp310-cp310-macosx_10_9_x86_64.whl (4.4 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

pyAgrum_nightly-1.7.1.9.dev202304031680456188-cp39-cp39-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.9 Windows x86-64

pyAgrum_nightly-1.7.1.9.dev202304031680456188-cp39-cp39-macosx_11_0_arm64.whl (4.0 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

pyAgrum_nightly-1.7.1.9.dev202304031680456188-cp39-cp39-macosx_10_9_x86_64.whl (4.4 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

pyAgrum_nightly-1.7.1.9.dev202304031680456188-cp38-cp38-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.8 Windows x86-64

pyAgrum_nightly-1.7.1.9.dev202304031680456188-cp38-cp38-macosx_11_0_arm64.whl (4.0 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

pyAgrum_nightly-1.7.1.9.dev202304031680456188-cp38-cp38-macosx_10_9_x86_64.whl (4.4 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

File details

Details for the file pyAgrum_nightly-1.7.1.9.dev202304031680456188-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.1.9.dev202304031680456188-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 cab402fd6f4983efc7a9fa7f5ab2c37c89905f71aaf8c20884a52c083ae9a3ed
MD5 b90e8bf1827c3fb82bb677aacff3c2c3
BLAKE2b-256 807725447013e10ef3468b4889a2f173f8d2d8e643a0ed7bf1ebfab4f858182c

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.7.1.9.dev202304031680456188-cp311-cp311-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.1.9.dev202304031680456188-cp311-cp311-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 62db1dd3658b08d2cabe348e9a2acb49b8b48ef86e081ba8f026502f0f8bdfab
MD5 46fffd302d7a866ee54eb3ce22418e0d
BLAKE2b-256 4ec0dc4b9084f6e948f5ba14550da938b15512a7b0d91af3549e56076127b66c

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.7.1.9.dev202304031680456188-cp311-cp311-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.1.9.dev202304031680456188-cp311-cp311-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 b2050b967272a021900b9f184e2c28f073aa5a811c18b1d4db6d591871f6ee31
MD5 0a911a45dca15daf56a65d8b428eb0e4
BLAKE2b-256 c5ff3c39280cdde4c77f980885d712c540c5f609883e3f284371baeb5509f949

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.7.1.9.dev202304031680456188-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.1.9.dev202304031680456188-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 b78a17c1fe32d4bc94e98a94fc08519ff9d1f4cb7e0cebbc94abc55e4b43947c
MD5 5035514f4461b5770dd0f17046fae9fe
BLAKE2b-256 0cb04dcdae7e86b01eaa6c6bcb0d3d0ce3acab795c2e78e97d183510d1c1741f

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.7.1.9.dev202304031680456188-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.1.9.dev202304031680456188-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 21bfff7b5215448ba84fc36f8d1e1c87343c9ce60507d8fc38beff5b4eef5e2e
MD5 a108440be239d64b6027e0f0af091e0d
BLAKE2b-256 b7c1901ab1c3d28d589e7ffbb07b6fb28686edcb4703276af26bba247ad3e3b5

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.7.1.9.dev202304031680456188-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.1.9.dev202304031680456188-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 81befa08fd0c65164495bbf9dae5537b622db7a58363977ce1c9f8f5c4b80345
MD5 60ada84d880714f61cc3d36b265649e1
BLAKE2b-256 b30cf422f56f4ac5ab5ff7cfb0e2ee03f2835aa4eaf60eb8db59e2ac26f2a4af

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.7.1.9.dev202304031680456188-cp310-cp310-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.1.9.dev202304031680456188-cp310-cp310-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 1890bf2b228eca210047474ea10478512152680171b21d699541791e0a7fd17d
MD5 ef661789ca6af684a74c28beb3bf264c
BLAKE2b-256 a15306bb285a5cacb482444876ef16f95341a519391830c8d4bb4ce06c9a1927

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.7.1.9.dev202304031680456188-cp310-cp310-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.1.9.dev202304031680456188-cp310-cp310-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 6632d01864cc39e1884bd58eda32719cd359aa1512de8b3a7d162005373ea6b7
MD5 c3c95bd78ea0fffd3d12208460efddf9
BLAKE2b-256 dfb983d35165b6c4f184724cb31b33a5da050571331ed8e17467c57dca3245e6

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.7.1.9.dev202304031680456188-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.1.9.dev202304031680456188-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 f100f1c53295a7d033721de34b349e92749e57090e7a20313274c1df02ea26af
MD5 085701e42be7d60cf76623ff9d64bc4b
BLAKE2b-256 25a2e8db9df70c8acd4d3b4cf1bd1fd988fd822fa77bf62d4df61f9f52202a9b

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.7.1.9.dev202304031680456188-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.1.9.dev202304031680456188-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 2bc4c0b95384ed05d12c091b03ca258886bf11a14e9141b1a65633dcb20eb6e1
MD5 08816432918973a1b2a3a2b7596a6d5f
BLAKE2b-256 f0c87a137cbbb6d68db70a02e46eb9b6b84dd6e312403a62c29cc529adf28696

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.7.1.9.dev202304031680456188-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.1.9.dev202304031680456188-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 0d0065aa4c8b71cb434e15405a43e8f421abfb4f75972836f21e3c1703f57e57
MD5 8214fcd7fdeb01e28437205bf41d5ee2
BLAKE2b-256 7d6194bf64db1f3f0b0d3cdb62ccc7c2834c9d29d378bc0635c300c2f454ed4e

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.7.1.9.dev202304031680456188-cp39-cp39-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.1.9.dev202304031680456188-cp39-cp39-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 b8a29e9555b962c9c7174fbb5b709d07a6cfa02323752d18ca76f576413449b3
MD5 f185216f71cee8daf4b190ad2f3a4a05
BLAKE2b-256 4025f3a013f2f2af1f360ac70af67c0f21894e2af75be4df08969db60b59e9e0

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.7.1.9.dev202304031680456188-cp39-cp39-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.1.9.dev202304031680456188-cp39-cp39-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 39300f5686b50be51152238971ed114a2467331387b9f3cd60758f535d711670
MD5 7563e3624973c56bc8cdd7ec1ed76e04
BLAKE2b-256 7b22c98c8712f1c82bd0cba5abeade78bd8797266b74d6785aeb8a5b8c973f40

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.7.1.9.dev202304031680456188-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.1.9.dev202304031680456188-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 c3203bd1a30b71cf08e2c92114adccbc2b009d1b81c25563bef76205cd48bd40
MD5 cd93eb310790cfde7e430b058d91fd49
BLAKE2b-256 290478f51a807d9a7162061b60bee0d663f5ee58bedbbc875d5165a805f773f0

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.7.1.9.dev202304031680456188-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.1.9.dev202304031680456188-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 264220582aa23da6455ab5c2e8a1aba3596155cedadeadda94df287dc3b7b9c9
MD5 76c0f843ed0e5817bb87f04b3d53b36b
BLAKE2b-256 4c124b01af3e742c45a38215318c14476c7d0e8c58deb5c0280e186754edf081

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.7.1.9.dev202304031680456188-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.1.9.dev202304031680456188-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 b5513d78018d52a17253664bfde527d3ca9f4bd1f166cb64b50f92c8ffef9d51
MD5 e90761670f1b9f0eaf6a6e85d4a4ab6f
BLAKE2b-256 3bcffc9c1c58682012ebbfff26fdd6e6f6095fdce8c51a593446e2f792ee574d

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.7.1.9.dev202304031680456188-cp38-cp38-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.1.9.dev202304031680456188-cp38-cp38-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 fe452a610d76e0045d4be6e199b74d60584fa211ecd5eea39def55a59f783b1c
MD5 f021762837a6a83450c41e415387466b
BLAKE2b-256 6ca035605d90a6678d066f83ca4c25868258a7cddf1a2f7e97a89e4137c3ef0f

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.7.1.9.dev202304031680456188-cp38-cp38-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.1.9.dev202304031680456188-cp38-cp38-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 32df50b60412858a4843853772efdf696cd1cb44002ea4c327d8ccd9464e007a
MD5 f24ded24e0993f7ed76a187446373e95
BLAKE2b-256 7d1f65cfbb3d063e7e8c808a94959aba189c5652297de407380963680a133976

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.7.1.9.dev202304031680456188-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.1.9.dev202304031680456188-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 ee30cc169ed38afb36e4976b143dbee520f361699b8730d8e473ea534c5ad689
MD5 d38e7b93b9832f9b448b1570eab3128c
BLAKE2b-256 0cae8952873568a14d806de16c53914b385e881fb1adcb46b78781866b365e6a

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.7.1.9.dev202304031680456188-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.1.9.dev202304031680456188-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 6d23c6865e50a9737b185e35e8255a48869101822982936fcafb3f188630e412
MD5 27f6a90ec1c8c6d3df94e1bea01008b5
BLAKE2b-256 d9a206ff8a195ab48f71eb7b556cd9f94bff82e9bccac9c1f7c7bcce08cf57dd

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page