Skip to main content

Bayesian networks and other Probabilistic Graphical Models.

Project description

Description: pyAgrum is a scientific C++ and Python library dedicated to Bayesian Networks and other Probabilistic Graphical Models. It provides a high-level interface to the part of the C++ aGrUM library allowing to create, model, learn, use, calculate with and embed Bayesian Networks and other graphical models. Some specific (python and C++) codes are added in order to simplify and extend the aGrUM API. The module is mainly generated by the SWIG interface generator.

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

pyAgrum_nightly-1.7.1.9.dev202304111681056266-cp311-cp311-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.11 Windows x86-64

pyAgrum_nightly-1.7.1.9.dev202304111681056266-cp311-cp311-macosx_11_0_arm64.whl (4.0 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

pyAgrum_nightly-1.7.1.9.dev202304111681056266-cp311-cp311-macosx_10_9_x86_64.whl (4.4 MB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

pyAgrum_nightly-1.7.1.9.dev202304111681056266-cp310-cp310-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.10 Windows x86-64

pyAgrum_nightly-1.7.1.9.dev202304111681056266-cp310-cp310-macosx_11_0_arm64.whl (4.0 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

pyAgrum_nightly-1.7.1.9.dev202304111681056266-cp310-cp310-macosx_10_9_x86_64.whl (4.4 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

pyAgrum_nightly-1.7.1.9.dev202304111681056266-cp39-cp39-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.9 Windows x86-64

pyAgrum_nightly-1.7.1.9.dev202304111681056266-cp39-cp39-macosx_11_0_arm64.whl (4.0 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

pyAgrum_nightly-1.7.1.9.dev202304111681056266-cp39-cp39-macosx_10_9_x86_64.whl (4.4 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

pyAgrum_nightly-1.7.1.9.dev202304111681056266-cp38-cp38-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.8 Windows x86-64

pyAgrum_nightly-1.7.1.9.dev202304111681056266-cp38-cp38-macosx_11_0_arm64.whl (4.0 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

pyAgrum_nightly-1.7.1.9.dev202304111681056266-cp38-cp38-macosx_10_9_x86_64.whl (4.4 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

File details

Details for the file pyAgrum_nightly-1.7.1.9.dev202304111681056266-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.1.9.dev202304111681056266-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 6fc7a9de574b950d0c33ee9361dc0bcbc41840bcad93cd9df4002491c004e0a8
MD5 63aa5a73c71e4c6cecd1416fdcc544ec
BLAKE2b-256 8fba375cc54a4728d6c3ad1637b87bffc4926b1c875788ee287d87ecb72a1b72

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.7.1.9.dev202304111681056266-cp311-cp311-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.1.9.dev202304111681056266-cp311-cp311-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 4ec4657a458f844c88e30173f946f3b2225f66d334435662bf150055620038ef
MD5 8894f6d914b897fcf66102baa18fad18
BLAKE2b-256 c65bdc69919be7fb6c620f7f2b891a7d6d622b6884278f0667ecf0204cb4f184

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.7.1.9.dev202304111681056266-cp311-cp311-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.1.9.dev202304111681056266-cp311-cp311-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 bbbaf3869350265a85466209fb598c66c52f178903f6297bd99e66e984825ada
MD5 3e17760d37ffc34bb2648df3dc9a1d5c
BLAKE2b-256 9cf2e749ea4a38a89d316579df786fe35a069c3b8e8d7ee17dbb55081685a9aa

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.7.1.9.dev202304111681056266-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.1.9.dev202304111681056266-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 b64d7ef7ecabfd21e390b877036ddbef0db170e44cf2f005f6f87fb5b1116800
MD5 130fe9fa47b961b5c8a53fd411fba982
BLAKE2b-256 00553eafa41d8b199c1c949604883858154cf1b1bc1cf9630ed666dcc8a2c588

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.7.1.9.dev202304111681056266-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.1.9.dev202304111681056266-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 d09425b6442183e92604c443b5aac43941cd4b020381b41e9c03592434da49b2
MD5 6b0e7165997fb05bd412280fcff0d256
BLAKE2b-256 1c00a114029e8b532dbb39c45141dafa6fb518ef647bde924cb6d86e611b1ebd

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.7.1.9.dev202304111681056266-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.1.9.dev202304111681056266-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 6ab0564f435597c8acbbaaae6c8b40d1cd275de70f8050ce0d41b92a732a1867
MD5 7921316e10b5df48be2e39107b84c888
BLAKE2b-256 ebd77ba7e60ac7a4061c6d69203e653c85e903af0f9ad55d885b6a6d51ae7893

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.7.1.9.dev202304111681056266-cp310-cp310-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.1.9.dev202304111681056266-cp310-cp310-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 d8ec9bdbb816e8631c0ba330a44a96e4cb4885753135521f657a2c53c9912e28
MD5 a1fccdb69d399a1db232ea695d77c247
BLAKE2b-256 a8506cddf850bdb2f6e7c5dae8547e4c6eaac2e697d609d06b1ebb2bf3635507

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.7.1.9.dev202304111681056266-cp310-cp310-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.1.9.dev202304111681056266-cp310-cp310-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 06fa52ecd0ea2892c909ca38567dcdeb5ed269aac1ef728b7af1299ecc0ccc5f
MD5 fcdb97b4dc3b596f6e1fe5360c110e7a
BLAKE2b-256 cb93c859da4161ce38da7b1c2c8674f28f7bd4498c390ecb5331c14c507a1653

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.7.1.9.dev202304111681056266-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.1.9.dev202304111681056266-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 9db6545cdda396b20aebffdfe70964bdf965d2cf435a3566f9e0345defd29a71
MD5 619a83b611e6111b63f592cfa406da04
BLAKE2b-256 b9f2087bd20e667bfc7719f181e149ceb4711f291c3e0ac0246d31618971f202

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.7.1.9.dev202304111681056266-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.1.9.dev202304111681056266-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 fa43af2e2c804f919053ac0846da9ca769681b22e9df34012ba2d8d7e8e8f2a8
MD5 cd4c6c58c99cf69d87e66526f763d112
BLAKE2b-256 e1dc119baa95e1caec907ee159f1e2cc781fc07cfc1cdabea0fd13c9b4d36b36

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.7.1.9.dev202304111681056266-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.1.9.dev202304111681056266-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 acebfd7d3659898d22ce0055e88fda1fd75b539d6b0f3fda44ccb77c65daccfd
MD5 d4d627a4f90d751f05f2ff4f2e8b0b05
BLAKE2b-256 c5fa2b4683579bd9194a02b62d68816890100c9bf0ffeb0d91286b68260e8ac0

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.7.1.9.dev202304111681056266-cp39-cp39-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.1.9.dev202304111681056266-cp39-cp39-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 3406b6f8f2bff0528d8be1a2c111dc9faa8244199a5d22de9bb0374b39e4f746
MD5 cff69b56eab0dcc7e6f1b91f96dbbf91
BLAKE2b-256 5802f8dd96ce26dd59854fafba345e1320b85d3ff9e02e8ecdea5fc6b11d80f4

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.7.1.9.dev202304111681056266-cp39-cp39-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.1.9.dev202304111681056266-cp39-cp39-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 194b3bc542d64f782611c4635890b5240b38de89ff8f5edb09e057b5624a63e7
MD5 b6f76c8756519cf1c86342de7cbdb01c
BLAKE2b-256 8a0a76bb92f2aa8b372d06fca1f3d7fc54779a5ea75df543a0e12de97d6f91dd

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.7.1.9.dev202304111681056266-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.1.9.dev202304111681056266-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 3467fc7eba30b301c05362e28b52815d144e603589aa8b4f960e612c8456daca
MD5 5ba971a7a22bd85275ae719928b372f0
BLAKE2b-256 bbf2806c2048e82898947614383f4c98b5d59cf28e554ce478b19e8721905e10

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.7.1.9.dev202304111681056266-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.1.9.dev202304111681056266-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 9fa055b1a9e59635f1cd70d2568eb353e24ad8dcf0de675d9c6dfbaf7acfd9bc
MD5 3251da4659b4952ff6f5684528b58493
BLAKE2b-256 b44adc1ffc3282214e2657cc4a3fd5672f9d22abd956635bb5f6ea176edec5a5

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.7.1.9.dev202304111681056266-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.1.9.dev202304111681056266-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 383ba02226f60502001f1d396b625c3f8653e32d1fb8fdecb04e504453fbbbdd
MD5 098e9ccd5bf037b462cb64f46e58c35a
BLAKE2b-256 516b57dcbccdab3cf93473b49784de767868ed20716ba1eefc57cbde677a651f

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.7.1.9.dev202304111681056266-cp38-cp38-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.1.9.dev202304111681056266-cp38-cp38-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 6f622f41b92994badf9627b3c1e10fa42d4830e41de2bf80030430d9033f6b67
MD5 015582df0f4aed14b9c483d9d8cbea70
BLAKE2b-256 2b432ac310213c8734380f2acdfa07f46f7fdd97239127a92f9a40cdeed4f6b4

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.7.1.9.dev202304111681056266-cp38-cp38-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.1.9.dev202304111681056266-cp38-cp38-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 17b0b79990a975ce197c2a01dd0a7f18368530694ecb6915ce09aa02fb04dd2c
MD5 5b1797f989d29fbabfc75212b68ba809
BLAKE2b-256 b8659770332257ec5df4551d005609882e7a8885700ce96ea4a69677935e76a7

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.7.1.9.dev202304111681056266-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.1.9.dev202304111681056266-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 3c8c260df9182ef773c5211597d9ceabab6d8a2aa8b8cd9d873de4ca474edded
MD5 df875c9aa52e32bc09926639e9fa4c33
BLAKE2b-256 1c674a2f3ac7e89577a7f7adb7ddaf98d46dbef51323ad0f0fa9d37c445e1f47

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.7.1.9.dev202304111681056266-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.1.9.dev202304111681056266-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 e34ed01be4c50235d8aab3a00b506614890e7a0326834807c61ad6e56cf8bdcf
MD5 bf7f2fbdfdc4cd69449b73012c6f3c3e
BLAKE2b-256 8d221ae4072deb664ea077951aeac71097292cc9f4494d49258f448296c9a9a7

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page