Skip to main content

Bayesian networks and other Probabilistic Graphical Models.

Project description

Description: pyAgrum is a scientific C++ and Python library dedicated to Bayesian Networks and other Probabilistic Graphical Models. It provides a high-level interface to the part of the C++ aGrUM library allowing to create, model, learn, use, calculate with and embed Bayesian Networks and other graphical models. Some specific (python and C++) codes are added in order to simplify and extend the aGrUM API. The module is mainly generated by the SWIG interface generator.

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

pyAgrum_nightly-1.7.1.9.dev202304121681237912-cp311-cp311-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.11 Windows x86-64

pyAgrum_nightly-1.7.1.9.dev202304121681237912-cp311-cp311-macosx_11_0_arm64.whl (3.8 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

pyAgrum_nightly-1.7.1.9.dev202304121681237912-cp311-cp311-macosx_10_9_x86_64.whl (4.2 MB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

pyAgrum_nightly-1.7.1.9.dev202304121681237912-cp310-cp310-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.10 Windows x86-64

pyAgrum_nightly-1.7.1.9.dev202304121681237912-cp310-cp310-macosx_11_0_arm64.whl (3.8 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

pyAgrum_nightly-1.7.1.9.dev202304121681237912-cp310-cp310-macosx_10_9_x86_64.whl (4.2 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

pyAgrum_nightly-1.7.1.9.dev202304121681237912-cp39-cp39-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.9 Windows x86-64

pyAgrum_nightly-1.7.1.9.dev202304121681237912-cp39-cp39-macosx_11_0_arm64.whl (3.8 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

pyAgrum_nightly-1.7.1.9.dev202304121681237912-cp39-cp39-macosx_10_9_x86_64.whl (4.2 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

pyAgrum_nightly-1.7.1.9.dev202304121681237912-cp38-cp38-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.8 Windows x86-64

pyAgrum_nightly-1.7.1.9.dev202304121681237912-cp38-cp38-macosx_11_0_arm64.whl (3.8 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

pyAgrum_nightly-1.7.1.9.dev202304121681237912-cp38-cp38-macosx_10_9_x86_64.whl (4.2 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

File details

Details for the file pyAgrum_nightly-1.7.1.9.dev202304121681237912-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.1.9.dev202304121681237912-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 dd407ccef3d52e564aff75e76471eab0b8a9baefc8a56a86f897e4eb691a6068
MD5 3eb6839aa33839c5e909ee1a780f3416
BLAKE2b-256 92fe3bd9626e8ed688bbbeb0d31c2d88dc80a2449a9a753e2dc97cc580a44ee0

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.7.1.9.dev202304121681237912-cp311-cp311-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.1.9.dev202304121681237912-cp311-cp311-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 1a15fab0ca01ff00c1010e18103009290c2fe67740c0f806a2ae68a2ea018fb4
MD5 2b0ac197abdde3bc95e2628392e91a56
BLAKE2b-256 b7f50431fcb726e1e91f547208da6cfcd3896a9e6491c8864c16a2434650b760

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.7.1.9.dev202304121681237912-cp311-cp311-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.1.9.dev202304121681237912-cp311-cp311-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 165000bd1d485e06278fdc98c1a696f0243b2b6ca0e6d5aa5d04e5274c00fe1d
MD5 48d732a7e827e926772cfaa41d05f879
BLAKE2b-256 fef185ec81b97d7522aa749d1ec377e13c9066e2ca0c7662699d762f1ae76ce5

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.7.1.9.dev202304121681237912-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.1.9.dev202304121681237912-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 c100283f07978c3b083f090c39b26e839b7a7f57f1a35b06c136f188ac330257
MD5 d7eb5ff9bc0b39364a3d9acd7e1df3c9
BLAKE2b-256 e0bf7d8de989747a5c7b8147be49625d2446ba19484cce483f5f821485edc361

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.7.1.9.dev202304121681237912-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.1.9.dev202304121681237912-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 f502e9a3f945175c36919036595c08aff1b9f2196da8a4817450fab0e2faa713
MD5 0fed214cd687ec37cf4d1030bc957f9e
BLAKE2b-256 b411766ac07e535150e070550e722cb8add13c40077b9575338e6f59f045ee25

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.7.1.9.dev202304121681237912-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.1.9.dev202304121681237912-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 280f34d1cc8fd433f167572d6aeb7f67df9b9f3649e6bc8978542ed95ae79ddb
MD5 fcd73b72b2f7d2579a26151af4b833b9
BLAKE2b-256 426fd08d057a7267bc25f43f2a3b40a3f2549bd19586296ea0de8602e60634fd

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.7.1.9.dev202304121681237912-cp310-cp310-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.1.9.dev202304121681237912-cp310-cp310-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 f3e6b59a48a2900fcbd786565beac62870d1b28cc65b0c10cbcdc4eb147e02df
MD5 70343fbcd0e6192f9d4c86b8b36c0f90
BLAKE2b-256 96eceb98ac5af08a86d2c7eb2c2c4795aaf25c660c9fe2b672cb97035d18281e

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.7.1.9.dev202304121681237912-cp310-cp310-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.1.9.dev202304121681237912-cp310-cp310-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 19b48f5adce42e08df0d431672cef994f70e661b7a2109cc33695074d14b9d90
MD5 c307371b3f14025a8b8cff831a15e5b4
BLAKE2b-256 d3c85565d0bd76a81b63cb83389809c41c95efdb77f2590bcb1514b90174ccb9

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.7.1.9.dev202304121681237912-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.1.9.dev202304121681237912-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 d4eb67655f16ee1e04484fab1be4da34935ea43b4ba897c9227972f940c38143
MD5 1640ac0484ae46e21e645b3745464cd0
BLAKE2b-256 9d95fd58a0f64527edd7787e3ed6a6bf2e5d4d06c7c10bbdf11fa9c6ea84e4cf

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.7.1.9.dev202304121681237912-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.1.9.dev202304121681237912-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 ed025c8186ed873407e95b9143941a3d861ffe507d64b2e0e86ec78de10309e0
MD5 ab13849ac0f018f6580f1c527140c41d
BLAKE2b-256 697012fe07fd7bc9ab5df9fda5031c96fe7b3b022472d44f14e90fd15163dc74

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.7.1.9.dev202304121681237912-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.1.9.dev202304121681237912-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 544741bbb279a819ce99762988ca7e4edf07dd07e84f2dec78a9ee754b552a98
MD5 9fc747efd89dec927da149f58a5ffd96
BLAKE2b-256 be8ef82314d947e0a9814b5c1a9ccb985c2dbdccb6897ab4c3ec08a245cfc699

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.7.1.9.dev202304121681237912-cp39-cp39-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.1.9.dev202304121681237912-cp39-cp39-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 36b5f41388d84f7946b80da54254b1b7604da3d25a824d558eadcefdd81d72dc
MD5 b6285d3584722af7e37410d99830b2e1
BLAKE2b-256 ce241b228e9d30ed92e4b74e1f42360eef5030fa6f84a77efdcadab2cc9fc4bb

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.7.1.9.dev202304121681237912-cp39-cp39-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.1.9.dev202304121681237912-cp39-cp39-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 10af062175da2c52fa76404cc73ec840748c1994c5e9b61112054af73224c4db
MD5 8816386d16540f95330b725cba925dee
BLAKE2b-256 1076fcd67e22e21d213d8a98801e4098c4216855595dc02c80c3beb7f837a823

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.7.1.9.dev202304121681237912-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.1.9.dev202304121681237912-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 570948164c81fdf71bf9f310ed576fa418c21b34fafd001a04a5e383b983f58a
MD5 0b5611087efd69252b2d3296d02e9be7
BLAKE2b-256 16dcd50aee93eebdac775488b4918e99261f2f74c01ff16696e2148bdbfe0dc0

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.7.1.9.dev202304121681237912-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.1.9.dev202304121681237912-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 cbe45562fc81bac13c34bde677f68ba18e8ce24220e3974cd539c1925c497816
MD5 c987c7a4848739eb1648f57b0f8df7b0
BLAKE2b-256 05b6eb5e22342eb8026fe617f0998466b247c623a3ef7798e58666a2bcc1ed66

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.7.1.9.dev202304121681237912-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.1.9.dev202304121681237912-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 de084e0dd2bf18e3999b4de35adf2b9c47bf45c8ae8ffe230c0acab954b9614c
MD5 550b366bb6da1cd6d082321a3f025223
BLAKE2b-256 4b056b3667be5898851fbe9ae2275d94e164634b018e8f6c8927cb1cd3488057

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.7.1.9.dev202304121681237912-cp38-cp38-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.1.9.dev202304121681237912-cp38-cp38-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 93a215ceb387241715ed53260268233faa3163382054eb2c516993f54d282d2d
MD5 fc5ff6f413364d12537cc54d06901cbf
BLAKE2b-256 8540da7f107a2e5f4a7094d08eef46692c2e67eb5142c3fdadaa6a3687a572d2

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.7.1.9.dev202304121681237912-cp38-cp38-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.1.9.dev202304121681237912-cp38-cp38-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 76dfd4deb1f8ab45dbb2c1c69d5ba694b345f8a8f6708b39d5c4c45ad3c8e575
MD5 0893a262341b96acc6488cee2fa38479
BLAKE2b-256 7ffe94fa97ebe48be6cd8e17016a0be2fd6dc51537dbb607f5301b25fb63aaae

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.7.1.9.dev202304121681237912-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.1.9.dev202304121681237912-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 cf99df16ef7330d9582c22fb96ebfe39ba62ab4023ee4f7a327241ef639c7562
MD5 a7a12bbb4960adc3887b7b4d3d91decc
BLAKE2b-256 3b2e55a843b7f1aa5d052798ecc7151ad4c5ed22924a2cf271c6e2b2c8133cdb

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.7.1.9.dev202304121681237912-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.1.9.dev202304121681237912-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 e68a3638dfaaf0f1aa7ba397a2452aa4128945259db605ac9523d857a7589937
MD5 ba3b7b97ffe6316d71938195c2d0d5fc
BLAKE2b-256 a91ee11f3c1956b015e824b5b9e20eec86d668c0b9fcc21e74af3402783023b6

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page