Skip to main content

Bayesian networks and other Probabilistic Graphical Models.

Project description

Description: pyAgrum is a scientific C++ and Python library dedicated to Bayesian Networks and other Probabilistic Graphical Models. It provides a high-level interface to the part of the C++ aGrUM library allowing to create, model, learn, use, calculate with and embed Bayesian Networks and other graphical models. Some specific (python and C++) codes are added in order to simplify and extend the aGrUM API. The module is mainly generated by the SWIG interface generator.

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

pyAgrum_nightly-1.7.1.9.dev202304171681314159-cp311-cp311-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.11 Windows x86-64

pyAgrum_nightly-1.7.1.9.dev202304171681314159-cp311-cp311-macosx_11_0_arm64.whl (3.8 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

pyAgrum_nightly-1.7.1.9.dev202304171681314159-cp311-cp311-macosx_10_9_x86_64.whl (4.2 MB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

pyAgrum_nightly-1.7.1.9.dev202304171681314159-cp310-cp310-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.10 Windows x86-64

pyAgrum_nightly-1.7.1.9.dev202304171681314159-cp310-cp310-macosx_11_0_arm64.whl (3.8 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

pyAgrum_nightly-1.7.1.9.dev202304171681314159-cp310-cp310-macosx_10_9_x86_64.whl (4.2 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

pyAgrum_nightly-1.7.1.9.dev202304171681314159-cp39-cp39-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.9 Windows x86-64

pyAgrum_nightly-1.7.1.9.dev202304171681314159-cp39-cp39-macosx_11_0_arm64.whl (3.8 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

pyAgrum_nightly-1.7.1.9.dev202304171681314159-cp39-cp39-macosx_10_9_x86_64.whl (4.2 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

pyAgrum_nightly-1.7.1.9.dev202304171681314159-cp38-cp38-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.8 Windows x86-64

pyAgrum_nightly-1.7.1.9.dev202304171681314159-cp38-cp38-macosx_11_0_arm64.whl (3.8 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

pyAgrum_nightly-1.7.1.9.dev202304171681314159-cp38-cp38-macosx_10_9_x86_64.whl (4.2 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

File details

Details for the file pyAgrum_nightly-1.7.1.9.dev202304171681314159-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.1.9.dev202304171681314159-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 9e58c71197254eae0c190ec132f2942ad8228d8442d5ba02e3a9ccff7252d2a1
MD5 ef75018307e672c413a4ef6bcf6c6cd9
BLAKE2b-256 ccf7fdf1c045d7a9261b7ed0f0c4bac772f62c862962b2c221d5d0eb6634162a

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.7.1.9.dev202304171681314159-cp311-cp311-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.1.9.dev202304171681314159-cp311-cp311-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 50d276821f7f2532816f2b0551c0e491e562ff3fa94e8142f8d5775da439d6dd
MD5 80a48da3c0cb8d4f735a8d02060d43df
BLAKE2b-256 097bca5600c4f84200ed790100da678caab04824f0adcd106ed174ec96eff9de

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.7.1.9.dev202304171681314159-cp311-cp311-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.1.9.dev202304171681314159-cp311-cp311-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 8d3b3dbec55f090e4909a5a259068e6f7c74f7b250f3bde0af399c691a6d065c
MD5 7e4da7c8e415680c89d76602a61479b1
BLAKE2b-256 32e010828c94663de0e3615da20a1f5296c90e693b039b4b007dab86585a2bfe

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.7.1.9.dev202304171681314159-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.1.9.dev202304171681314159-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 4c201c924ca50729e144e6849950361e2d86994c03b5d5566369cdb93251887e
MD5 613cf778617cd2cbcf2b116aeaafea45
BLAKE2b-256 ee0fc48e0c384bbfcbbcac5f73417bd03bd51c7eb3d386f0fc3336f35e9ab3b5

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.7.1.9.dev202304171681314159-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.1.9.dev202304171681314159-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 084c4e75c9338a4f005524e2bb7540f1de018cbde328435e1b9c74932f8d56ec
MD5 4f3565475544a482e06ccc771ff11009
BLAKE2b-256 c46c2e7e949a2a95ba8537ddb62d97bf476e703a3e38511850f61fefaf5fed22

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.7.1.9.dev202304171681314159-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.1.9.dev202304171681314159-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 ff253a8d245dd322524965ced7044728b07c3dabe545a66460be58f46a81c39a
MD5 79df656afbb8ce67796f86a4c06bf717
BLAKE2b-256 ddf5b978eb1f8eb121f88ee1db95f4bc49f1ba0c4feb9bee36c75696dfdd0c4b

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.7.1.9.dev202304171681314159-cp310-cp310-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.1.9.dev202304171681314159-cp310-cp310-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 eb1a4ce0bb00b415eb8deb225f05e151cc615a8b5491facdef878de57215bf07
MD5 db3babe7bad7b5f37c7ce12e2ef25a8a
BLAKE2b-256 d07385026cd0bb2fc369e146fb2685f686e3e92e97a4da1b8197a6b894da9b54

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.7.1.9.dev202304171681314159-cp310-cp310-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.1.9.dev202304171681314159-cp310-cp310-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 cfff1bbeba718221ebb107a88badbcbe32ed96d0deb553357ab16506c97263c2
MD5 cb3dfe1ef77305a63ba224e1e3f101c5
BLAKE2b-256 25ead337cf40f2713144aeb1157a1905ebd9acdddd0ae554b7e6d466bfb7707d

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.7.1.9.dev202304171681314159-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.1.9.dev202304171681314159-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 bcf489961208042c34d0d4ae309267933057366728cdc38acd2a7deccf08c37a
MD5 48a19068d9e2ac7d7e2157108313a716
BLAKE2b-256 0c4d1307b17aab099621bc2249d5ff4294198f6a7f9be448d054e7325a225ede

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.7.1.9.dev202304171681314159-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.1.9.dev202304171681314159-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 36090809612e9b48371c3a5855fd7b91ebe8e8b9fde9e2e36a1cef9026b71ede
MD5 1ced6a581d768a23127488a5dea0770b
BLAKE2b-256 1872cb866a978644d531df67c22d549ce8e41ed68f2c855e86257edade8db4af

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.7.1.9.dev202304171681314159-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.1.9.dev202304171681314159-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 e6a177ae59d8c2761577550aaa8bc49264e5c4f1ba5fd423d4e97676a0ec6ec2
MD5 d40c8a594c025950f66f27c887084491
BLAKE2b-256 aea4be6369563bdbd700af96f23e992b56fab8f525fd814e55d5715f8a70ab70

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.7.1.9.dev202304171681314159-cp39-cp39-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.1.9.dev202304171681314159-cp39-cp39-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 5037b35b0acf292d1b17cef3d6deca7459c981ca158cde3878562dd43aece8e2
MD5 b1f64d57262fbea0cd947b97f66a7868
BLAKE2b-256 9c09eaf8a1faee2954952aef55ef6ac9183a9618e517e0a6f5e24d287fdf07c1

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.7.1.9.dev202304171681314159-cp39-cp39-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.1.9.dev202304171681314159-cp39-cp39-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 0f716d03e37dd2b21b058e5372053993070646b51903c5aca73d6615543bc7bb
MD5 fb1a28da00fd2f9fe1cccc414da4bcdb
BLAKE2b-256 71daad9579a852863a10be59ee5a97a58043d17751fabcb9559dc9a41f47f826

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.7.1.9.dev202304171681314159-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.1.9.dev202304171681314159-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 21928491aee920da5aa6d5d1ef321a73939d9297a852a5dccbc99938b90b3a8c
MD5 04381924e34579134f146551116f985f
BLAKE2b-256 70292af857b46ba2e160ce6f92eb745e5f7106cb4875054f608dc16dbec82b70

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.7.1.9.dev202304171681314159-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.1.9.dev202304171681314159-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 c00e156b0e55c868c9d785700fac37c5fabdb784a4d766e4e87881a596a80585
MD5 718add7dd7940c04e0957a65e7690421
BLAKE2b-256 cc637befcab20e7ed28a9d8c7790f0b88ed35673eb30f90942de9effb55bd1e3

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.7.1.9.dev202304171681314159-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.1.9.dev202304171681314159-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 f439076fd9a93144ab409dd5dcd680bba0fbe8f0929052e084d598198d0bda13
MD5 076eaae80ca122c6ff40deba92a1ddcb
BLAKE2b-256 9e4a774f2f86c55950f7327389475c88bf6b330e1092e01409744409e5fe24fc

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.7.1.9.dev202304171681314159-cp38-cp38-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.1.9.dev202304171681314159-cp38-cp38-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 baa479ee0f43034d904562ae232df31ea2e4b7aed2312f2a8eca2837febe4bce
MD5 3303c3223b8bb90821e72881d55b949a
BLAKE2b-256 d25b22297597333c70b72f141cf2e80b6dee71a1131c1feffcb82db4c537f56b

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.7.1.9.dev202304171681314159-cp38-cp38-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.1.9.dev202304171681314159-cp38-cp38-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 9b92371e0624715b3369761d003b51f7e3f40d1835d6bf8481bb28d22e042f72
MD5 964fc10c9814af6035ff4b2d7b59f558
BLAKE2b-256 51e5e74a916649d6b75050f18df51c20727031f85cf9167eb4448d5d6fc75765

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.7.1.9.dev202304171681314159-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.1.9.dev202304171681314159-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 4611177242c072ba4013d1f954f923157cf786c337154b636f1db3dea3225071
MD5 d591782074520f2b06deba9ce976fc43
BLAKE2b-256 25d7a6913271812fc0be6a7aa1b44af430c78aa169c5a406659da37664b54ad6

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.7.1.9.dev202304171681314159-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.1.9.dev202304171681314159-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 4b8a969fede0f47409d40c0770cbada006ec03ff31ea98d17d87d27a77232827
MD5 37f168167c35eefe5fc6d64495e59d50
BLAKE2b-256 1668908280e675bc6fb5bce41675755fe7e253ae31dfb658f7aad045ea11dccb

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page