Skip to main content

Bayesian networks and other Probabilistic Graphical Models.

Project description

Description: pyAgrum is a scientific C++ and Python library dedicated to Bayesian Networks and other Probabilistic Graphical Models. It provides a high-level interface to the part of the C++ aGrUM library allowing to create, model, learn, use, calculate with and embed Bayesian Networks and other graphical models. Some specific (python and C++) codes are added in order to simplify and extend the aGrUM API. The module is mainly generated by the SWIG interface generator.

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

pyAgrum_nightly-1.7.1.9.dev202304181681314159-cp311-cp311-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.11 Windows x86-64

pyAgrum_nightly-1.7.1.9.dev202304181681314159-cp311-cp311-macosx_11_0_arm64.whl (3.8 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

pyAgrum_nightly-1.7.1.9.dev202304181681314159-cp311-cp311-macosx_10_9_x86_64.whl (4.2 MB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

pyAgrum_nightly-1.7.1.9.dev202304181681314159-cp310-cp310-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.10 Windows x86-64

pyAgrum_nightly-1.7.1.9.dev202304181681314159-cp310-cp310-macosx_11_0_arm64.whl (3.8 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

pyAgrum_nightly-1.7.1.9.dev202304181681314159-cp310-cp310-macosx_10_9_x86_64.whl (4.2 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

pyAgrum_nightly-1.7.1.9.dev202304181681314159-cp39-cp39-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.9 Windows x86-64

pyAgrum_nightly-1.7.1.9.dev202304181681314159-cp39-cp39-macosx_11_0_arm64.whl (3.8 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

pyAgrum_nightly-1.7.1.9.dev202304181681314159-cp39-cp39-macosx_10_9_x86_64.whl (4.2 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

pyAgrum_nightly-1.7.1.9.dev202304181681314159-cp38-cp38-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.8 Windows x86-64

pyAgrum_nightly-1.7.1.9.dev202304181681314159-cp38-cp38-macosx_11_0_arm64.whl (3.8 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

pyAgrum_nightly-1.7.1.9.dev202304181681314159-cp38-cp38-macosx_10_9_x86_64.whl (4.2 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

File details

Details for the file pyAgrum_nightly-1.7.1.9.dev202304181681314159-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.1.9.dev202304181681314159-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 686f40e596dd510be0f1e531d35d6d0373de63e0099fedf7f524875bb82367f2
MD5 e6a0fed765ec661d652d5e99bc781b53
BLAKE2b-256 30ff59436d3b3331b7904de5c1686b6b716bb62817cd5d44bbfbc5a9ed945ec9

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.7.1.9.dev202304181681314159-cp311-cp311-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.1.9.dev202304181681314159-cp311-cp311-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 76dae7fe3c7e017ead707a99973f258fc2cca9cc1b3f9d387d17b7cafe3e97a5
MD5 2420bd211f99ad1cda5325484758e92b
BLAKE2b-256 e9252ed1d78d482a6cd327b803d741cd7ad19bb1849bdd76b44fbe41547ab31f

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.7.1.9.dev202304181681314159-cp311-cp311-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.1.9.dev202304181681314159-cp311-cp311-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 82c3dc17f8422e47e861d71626524554deefac4f716e6adf77ee054e76e1e7fc
MD5 0d770f0bee38e0495c255ee4ed2f4478
BLAKE2b-256 610a616481f222a65994a4286a442ee2bb8c70ac38b19413868ad6e176a7934b

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.7.1.9.dev202304181681314159-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.1.9.dev202304181681314159-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 5bc45e32c156fa55ce089cac73aa011740c87ce0f4caa1810b68052c1fa99fef
MD5 11e5f6559a8956b98f9fd0018dce5743
BLAKE2b-256 0a4f0457c3bfc4e46fbb1174871a914a0c650219538463aa1750e5add9a0c900

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.7.1.9.dev202304181681314159-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.1.9.dev202304181681314159-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 2bf819c6f2f0a34f7742f35c581166b43765029053152d47005be57b130a5219
MD5 d7ebc05ff71dc666cc7a18b82f1f20dc
BLAKE2b-256 c61b294b33a2284ca0c64c790e44ccd409f312be1d93be076439c0fe3703fdc9

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.7.1.9.dev202304181681314159-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.1.9.dev202304181681314159-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 8000416eb1d45c665989813d453ee41078152394aaba16009f1ce61e30a8bbe1
MD5 eb5e667470f4e2194371817dd99ada0a
BLAKE2b-256 aff28c3c36d0f2591ce872a797241fa16684dd04a1f284afff7af9f5ca6713b1

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.7.1.9.dev202304181681314159-cp310-cp310-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.1.9.dev202304181681314159-cp310-cp310-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 8d8b868783635ae09a0b41d69eb81804da0c37a2220daa977ce3060eeca638fb
MD5 d48eb99583218eb3039ec00b50072ab5
BLAKE2b-256 a2edbdbe82d776e62c1b3e6aab62b45a4367e80fe08d3c09cf10741b998c01af

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.7.1.9.dev202304181681314159-cp310-cp310-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.1.9.dev202304181681314159-cp310-cp310-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 2431e27ad1bff666359bcdd9a04539f3bd175d94010709e1bb0d3a383cf958da
MD5 16ac34d100c07c9b251914fe699215e9
BLAKE2b-256 2ef5f86db42732e75688f86e7918c36e35c4bbb15b131e7a08afbdafb6ab418b

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.7.1.9.dev202304181681314159-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.1.9.dev202304181681314159-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 139b065990fefa491b86c52049bde53d495b9f2dfcce50feaa64cf879a1d3320
MD5 109ad20d74b511c163ef92e5f15d3fb7
BLAKE2b-256 b1e5b334f2614733db78348ca466f3e6b795e3665ba1b6b02bf00dd73d40867d

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.7.1.9.dev202304181681314159-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.1.9.dev202304181681314159-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 01052570ee070ba7adf709d03394100e8ed536596e21a778a4376509e3ad962a
MD5 c6a8759213371c3bc73995e3bf067ee2
BLAKE2b-256 d3eff1cc100cf35bff500bd58c16e5f90bedbf22517bc014cecdf0ef76bbc43c

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.7.1.9.dev202304181681314159-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.1.9.dev202304181681314159-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 0ecd1a9e0956c0ce25a7e82111931c29e3d53bf599ce236d15764e485d3065e8
MD5 8ea29a5875c35d64b248449b7f193a35
BLAKE2b-256 7c8e397733e6aae4db8dbb1ab30af797dc1a05c298b238ef6d9ea88766b2516d

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.7.1.9.dev202304181681314159-cp39-cp39-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.1.9.dev202304181681314159-cp39-cp39-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 192ad0cbc14035e5b6bded5439dea65922a091a6fb348b3b30f57609cb9a7bca
MD5 871f3f9b6e4675443edf4fa7581bc75e
BLAKE2b-256 538ec846f6c4ea06f363fa13885cd0e016ba2a57a39175ca624d1b81c43a6c51

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.7.1.9.dev202304181681314159-cp39-cp39-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.1.9.dev202304181681314159-cp39-cp39-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 1b0b9e363d2e536388794e0bdd14961e3bad466c9611994e6970fc0bd4cfa381
MD5 68bcc042003335775d17ef7640bbcfcc
BLAKE2b-256 001faa55f2592900a0c85429256a8cd135422d2942bd7f42042ec7b16fc4dd0e

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.7.1.9.dev202304181681314159-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.1.9.dev202304181681314159-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 78327903536171f774b4bd43e6afd26fbf3d90ab7c3b0fd5a066ad1fccf1e77e
MD5 772a0c4b7e37d62c33431fa4522ecb42
BLAKE2b-256 363dc2a3a8a8719bba8736d2bdd62bb241ef795e305cb9e8e1a5362926dfe636

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.7.1.9.dev202304181681314159-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.1.9.dev202304181681314159-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 672322a51f5bad37a0824d486f1614fdba65dd9692d580243710b50b2eb495fd
MD5 487beb11d8b5c7085753235ea11bd8dd
BLAKE2b-256 432ee2f72f1863465d477b0fb953b1fdcbd9a66684916fd1017f7a55120a9901

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.7.1.9.dev202304181681314159-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.1.9.dev202304181681314159-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 d586fc2bb304332458c73a6edcfd87c1e19dd433a5d9e85e07c61eb36d6d9f6c
MD5 2ef655679ff68c45c9af49eefb47d9dd
BLAKE2b-256 70439a72bb763f36ad764c9ae8a7a4afdb1d1b6716cd46a0b33370d205fdfc7d

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.7.1.9.dev202304181681314159-cp38-cp38-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.1.9.dev202304181681314159-cp38-cp38-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 9a48834246208c58618490dc5fef7c089c7486fdddf55e3c6cfe035279991394
MD5 5e33ab2473c223f279acc3dc798f553c
BLAKE2b-256 3cbc2b5b58ec6b147723c5027a479f16ced1f9975d9cdd15cda2d82864bd5d21

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.7.1.9.dev202304181681314159-cp38-cp38-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.1.9.dev202304181681314159-cp38-cp38-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 48642159c7f9e42f351128a39a97878a9645645881702ac118b7f4026f58051d
MD5 4f5c0bd51ab77ebf6e0587d12012487c
BLAKE2b-256 ad82b98a28d6a8eb4120d0fadf28b1bdea78632932d553d17ac0abe2c965a5d4

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.7.1.9.dev202304181681314159-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.1.9.dev202304181681314159-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 a19c68bdfe96f634d53974bfd6886f5fc91deb20e2814243920ca06b522e4568
MD5 dd5ec830045bcf9a905fa68ee9441591
BLAKE2b-256 98ccc20c226a5d5e8ae7cd8670c12226efc18c454b687c0fa414d494564bcfdd

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.7.1.9.dev202304181681314159-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.1.9.dev202304181681314159-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 ce97f07d75c46aaf6025e2e742cd46ffe100e692a338c53cb760a941d362eab1
MD5 6a639d5de369ed22d7cfbbeb1c389c76
BLAKE2b-256 cbe8589e09dd256fb793552977d61bd0e2238a2a685a2c9bf49311fe58212dd2

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page