Skip to main content

Bayesian networks and other Probabilistic Graphical Models.

Project description

Description: pyAgrum is a scientific C++ and Python library dedicated to Bayesian Networks and other Probabilistic Graphical Models. It provides a high-level interface to the part of the C++ aGrUM library allowing to create, model, learn, use, calculate with and embed Bayesian Networks and other graphical models. Some specific (python and C++) codes are added in order to simplify and extend the aGrUM API. The module is mainly generated by the SWIG interface generator.

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

pyAgrum_nightly-1.7.1.9.dev202304191681314159-cp311-cp311-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.11 Windows x86-64

pyAgrum_nightly-1.7.1.9.dev202304191681314159-cp311-cp311-macosx_11_0_arm64.whl (3.8 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

pyAgrum_nightly-1.7.1.9.dev202304191681314159-cp311-cp311-macosx_10_9_x86_64.whl (4.2 MB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

pyAgrum_nightly-1.7.1.9.dev202304191681314159-cp310-cp310-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.10 Windows x86-64

pyAgrum_nightly-1.7.1.9.dev202304191681314159-cp310-cp310-macosx_11_0_arm64.whl (3.8 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

pyAgrum_nightly-1.7.1.9.dev202304191681314159-cp310-cp310-macosx_10_9_x86_64.whl (4.2 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

pyAgrum_nightly-1.7.1.9.dev202304191681314159-cp39-cp39-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.9 Windows x86-64

pyAgrum_nightly-1.7.1.9.dev202304191681314159-cp39-cp39-macosx_11_0_arm64.whl (3.8 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

pyAgrum_nightly-1.7.1.9.dev202304191681314159-cp39-cp39-macosx_10_9_x86_64.whl (4.2 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

pyAgrum_nightly-1.7.1.9.dev202304191681314159-cp38-cp38-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.8 Windows x86-64

pyAgrum_nightly-1.7.1.9.dev202304191681314159-cp38-cp38-macosx_11_0_arm64.whl (3.8 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

pyAgrum_nightly-1.7.1.9.dev202304191681314159-cp38-cp38-macosx_10_9_x86_64.whl (4.2 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

File details

Details for the file pyAgrum_nightly-1.7.1.9.dev202304191681314159-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.1.9.dev202304191681314159-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 2084f0258b167ce9850488582f21f28072dfcd5b91190fd21a429f8fc7b9aaea
MD5 3d82468a9ef86b870ded8159787c252c
BLAKE2b-256 78bdb7a106a910740679421ad8fabe372d3784233a823c7a52f8088c1d3e0f79

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.7.1.9.dev202304191681314159-cp311-cp311-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.1.9.dev202304191681314159-cp311-cp311-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 26acaeab7715f975831e0668cc1597a0f27437bee6244654be1193922d695feb
MD5 020270e757caf1f6b66d3cd6656ad683
BLAKE2b-256 2ca499165c85b69b4d0fde8b844228f22ae006dc91e82e1b8fd27bd0b7ffcaae

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.7.1.9.dev202304191681314159-cp311-cp311-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.1.9.dev202304191681314159-cp311-cp311-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 d8269560d8dc37fa24f03abe6f52af7c4459c409d69b02db535705d9563ac5a0
MD5 7e0d7666f2efe0597abe0ebdc41ce2cd
BLAKE2b-256 8bc79786b7c205f97768be76a1923751d5eb12115069255e4bf9f7ba4bc258b3

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.7.1.9.dev202304191681314159-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.1.9.dev202304191681314159-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 295219b6bc555524baad3619553837d5ce0489e28341379dc17be7350a3eef8d
MD5 dbccdac9d87c3e4ecae74f456b2c8a11
BLAKE2b-256 ab92fc2b2cfd8bd090a99e6cbde418a374f4bb264c40b8676d7d29256b157bf5

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.7.1.9.dev202304191681314159-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.1.9.dev202304191681314159-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 487b7637ed47d7c8d488b0c3b9dd66d4af0033354682fa21d6c3315e528502ec
MD5 2e7dd9844b82af941fc469ff4a00e2a0
BLAKE2b-256 93e5b59d063d247633492197b01439570ae29966e6862a71c463ae9c1753d909

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.7.1.9.dev202304191681314159-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.1.9.dev202304191681314159-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 4a61e67e096c9c95fa9d244231a19b0125e49c71da7be3f778e5a2703d920b4a
MD5 8cc378cef83cf207093a0ffdc13f2f30
BLAKE2b-256 9ab47d1a6de88395eacc11f9fc9a0b8c2b8ac31907af0fd0867ea949452d445e

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.7.1.9.dev202304191681314159-cp310-cp310-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.1.9.dev202304191681314159-cp310-cp310-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 2e5a9b1b715583987b934f83e159607539c34921c21213a41c6708e9bb53f832
MD5 b6464c2f2b5cb594cdb2f6a6f42558cd
BLAKE2b-256 89c7095a680f6560f444e3699d2680ea5f886826297cea6d57e09c89934351c0

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.7.1.9.dev202304191681314159-cp310-cp310-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.1.9.dev202304191681314159-cp310-cp310-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 2985192b0a3a1abc1ec7f461d66564d529427fdcf24d6eaf79b737e660cfbc68
MD5 957b6fc25e0065b9b898177003e5dda3
BLAKE2b-256 904add9cd71c2c302ba420713ba9619bafc30b368899175acc162068280b148e

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.7.1.9.dev202304191681314159-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.1.9.dev202304191681314159-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 5d9a3cd7d1498bbcf6b986512e25cbdf4cb1b09d9187579134f856e9a5724f37
MD5 a69ea359038a8ebe31b98dd40403575d
BLAKE2b-256 d8be6ca32f51b96b21ccc097ab3678c571a391aac1c9958ca5ce77dbcfe183ab

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.7.1.9.dev202304191681314159-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.1.9.dev202304191681314159-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 56c57b7166895bd0daf410a251976739adcb3e1f2d6a85a2cf8db4dd364b758d
MD5 63d26a02ad5e501d93998ad38c6e1ff4
BLAKE2b-256 5ba7e9919985f31adb2199baf5e6a28454246e2336cc2a1d830d8bed3723edb7

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.7.1.9.dev202304191681314159-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.1.9.dev202304191681314159-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 69d2db775da355feaae0d944b13c2b0f9f26d0e9e2c1bb2e859eccdb7ba76c9f
MD5 96b028b84bb448ad3ddb7019ef634485
BLAKE2b-256 a1dabc4c3684f68a9f784bb04267b9e7a26fbd27e5f8866c39d6faf3c2c01cb2

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.7.1.9.dev202304191681314159-cp39-cp39-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.1.9.dev202304191681314159-cp39-cp39-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 0ce9b38b66f60468fb4c8fa946977b309ec4014e9304472190ad6c076bc6400c
MD5 e362a4df63349f34d970abab63714519
BLAKE2b-256 b6fd94530b6c50c755369f1280098bc2538794ea95168a83bb9fd199fdc3abe9

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.7.1.9.dev202304191681314159-cp39-cp39-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.1.9.dev202304191681314159-cp39-cp39-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 44e252b78bd26cecc28a8f1770d822bcb5fff29c3cd8562a49eeacb5cc618d02
MD5 27263fad3480dae8e82fd6fc17c05a58
BLAKE2b-256 1fa6c170b8f3bd2f173a4868ea73628b334a04dc4df948ba4f49e18b38e29818

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.7.1.9.dev202304191681314159-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.1.9.dev202304191681314159-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 e9399db1e2b9ee4e9b5743d5225b4733edcfca3c86b89de9448cc24b3e612e08
MD5 ec48e227312fb880dd126232e2b9a049
BLAKE2b-256 01ecd4b6cf257d947a77a39f76e7fcd781efdd48e60daef7fe7c9db1aa4d1aed

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.7.1.9.dev202304191681314159-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.1.9.dev202304191681314159-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 0776526dc8f09a00391a7575dc83619424bf1ecf69d2cde967c490236fb355b4
MD5 00906dea8da6283d3ccd6d79d38cc1ab
BLAKE2b-256 d4356f59cfe6315f4b6a0da5c37fec7cfb189339a578fc34707dd072b8529a24

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.7.1.9.dev202304191681314159-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.1.9.dev202304191681314159-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 121b9a0c4fc67ec9575d5ef5b330ade945fef108f5d1599bc644bdd7c9f01baf
MD5 47637bddc4a99dd2a58f8a34ef9a880a
BLAKE2b-256 a681eb14eeedcd8c39571689eccac9d5780387a0637e08c29034b449f7ccb0af

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.7.1.9.dev202304191681314159-cp38-cp38-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.1.9.dev202304191681314159-cp38-cp38-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 a4e4368689244dbfa08da6c9f7d2239f0f1e048134c0cd9b59fb5f1aee2de752
MD5 92c70fcd910857e82b305678d2494a23
BLAKE2b-256 93de075891ace3a2268854958593066c33c1105cc4e3fd160c43538a59e21bf6

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.7.1.9.dev202304191681314159-cp38-cp38-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.1.9.dev202304191681314159-cp38-cp38-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 a61ea89ae34ed74e3207e26dd75a24560d559f53a07922406124c44e0e112317
MD5 816cb6e52f646f9fbbbc40be96b9f928
BLAKE2b-256 c3cfa1aa1b40eefaa419b1a3d08cdcef0af662de8866588c802d4186814bb9b5

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.7.1.9.dev202304191681314159-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.1.9.dev202304191681314159-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 ed998751c0ccd15baf5068445180dee54bfc78920789ca1654ad73d895a1af85
MD5 89491c231eebc9284ebdb0b2742954a1
BLAKE2b-256 11562f9ee26a0f98f85e0e0d21fca384908aed2f8cedc0155584712673154fff

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.7.1.9.dev202304191681314159-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.1.9.dev202304191681314159-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 3ceee1df5221a144f5d6e249e6a10e6b333fb4a0df55b6bb930fa3b6a62cdd26
MD5 98477f608d3bbb5d484957e80484ba13
BLAKE2b-256 42e7f5e8eee8f71c80eae6110eb1cbaa0869088d82c608c5c281f1d86ee1cab1

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page