Skip to main content

Bayesian networks and other Probabilistic Graphical Models.

Project description

Description: pyAgrum is a scientific C++ and Python library dedicated to Bayesian Networks and other Probabilistic Graphical Models. It provides a high-level interface to the part of the C++ aGrUM library allowing to create, model, learn, use, calculate with and embed Bayesian Networks and other graphical models. Some specific (python and C++) codes are added in order to simplify and extend the aGrUM API. The module is mainly generated by the SWIG interface generator.

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

pyAgrum_nightly-1.7.1.9.dev202304221681314159-cp311-cp311-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.11 Windows x86-64

pyAgrum_nightly-1.7.1.9.dev202304221681314159-cp311-cp311-macosx_11_0_arm64.whl (3.8 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

pyAgrum_nightly-1.7.1.9.dev202304221681314159-cp311-cp311-macosx_10_9_x86_64.whl (4.2 MB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

pyAgrum_nightly-1.7.1.9.dev202304221681314159-cp310-cp310-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.10 Windows x86-64

pyAgrum_nightly-1.7.1.9.dev202304221681314159-cp310-cp310-macosx_11_0_arm64.whl (3.8 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

pyAgrum_nightly-1.7.1.9.dev202304221681314159-cp310-cp310-macosx_10_9_x86_64.whl (4.2 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

pyAgrum_nightly-1.7.1.9.dev202304221681314159-cp39-cp39-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.9 Windows x86-64

pyAgrum_nightly-1.7.1.9.dev202304221681314159-cp39-cp39-macosx_11_0_arm64.whl (3.8 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

pyAgrum_nightly-1.7.1.9.dev202304221681314159-cp39-cp39-macosx_10_9_x86_64.whl (4.2 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

pyAgrum_nightly-1.7.1.9.dev202304221681314159-cp38-cp38-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.8 Windows x86-64

pyAgrum_nightly-1.7.1.9.dev202304221681314159-cp38-cp38-macosx_11_0_arm64.whl (3.8 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

pyAgrum_nightly-1.7.1.9.dev202304221681314159-cp38-cp38-macosx_10_9_x86_64.whl (4.2 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

File details

Details for the file pyAgrum_nightly-1.7.1.9.dev202304221681314159-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.1.9.dev202304221681314159-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 f4132f5d9d141194fae69944c4f498d0d304b4e5392c2f39a67eef4571352cbf
MD5 11232e4b341d4f543ac9f4a575f4bb48
BLAKE2b-256 665ffb99182b78971fc28a6374d5785192c8aabcd7c7611c849e281715e94f9e

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.7.1.9.dev202304221681314159-cp311-cp311-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.1.9.dev202304221681314159-cp311-cp311-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 5e7f0c5a6f0f4abda905bd6e1109111cf5ceefd63a74f7a1cdb74518b1460fdb
MD5 3d46c8e3e37a570887a9974958d90942
BLAKE2b-256 21577c1670da816c483bd5d14a6c3d2fe1f5218df34bfe738718225ce6c5fe89

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.7.1.9.dev202304221681314159-cp311-cp311-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.1.9.dev202304221681314159-cp311-cp311-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 e09369a2ba461239e2e9dc3e2a78d504434dd9dc3cb587582fb4cbdbb8869c82
MD5 068b37f2962e478edeae79813d52fc61
BLAKE2b-256 a63de7c5d6dfa479ea07efdd210d4d817e8f0c0268598ad09f7464b277921e7b

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.7.1.9.dev202304221681314159-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.1.9.dev202304221681314159-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 2c1b44a76cc4f51215df7b1ef5aad91dca1cf3ed42d0904d7f8c8314cb1d2cc1
MD5 bc2a2ea2a01cde5287214af9cc78c2d9
BLAKE2b-256 849f86c4488b655bdbae6c47acac7edc1dc54a4150ccc8742ebdd52ca96a939c

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.7.1.9.dev202304221681314159-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.1.9.dev202304221681314159-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 4c1a8114a0c486dfea7ed855793dad2569130d83b932749ef0af43d8550f0be4
MD5 48fabccbe993d1bfc0693429b7b599d5
BLAKE2b-256 75b4655c0a8ed053c0212cf9d478ccbaee1da4a11f0aba36c313d561723cc804

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.7.1.9.dev202304221681314159-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.1.9.dev202304221681314159-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 fd0c41b01b058179fe065075a8d0a48d6dec2b184bd88fc24291a54aa451354d
MD5 f90560af6426fd631f9b42782d62f194
BLAKE2b-256 2d3310213f9d418b5f126591a3872e436287946394e211af358ac644bb1a9ee8

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.7.1.9.dev202304221681314159-cp310-cp310-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.1.9.dev202304221681314159-cp310-cp310-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 3bf2b413d9cd7e4c6fb96475bbb934e64c969937e7a32dc7c07424dcac09da60
MD5 e738c0b3a6f77422afa732eb041a878c
BLAKE2b-256 c7ca34124b9a6d7aa275076269b1dae4b0d500266e7025c63648f2f02ff6001f

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.7.1.9.dev202304221681314159-cp310-cp310-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.1.9.dev202304221681314159-cp310-cp310-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 adf99121afb35eeb2ef471ea2fbeb4fdf4c37e1d1720e50668cfec1330c25e6c
MD5 22fc8d2a669d3a6b8c1e59ea892a0d10
BLAKE2b-256 7adcf7dc806f5172ae75e5928180f1a3a2c0d775ca24de8172dddb6988d7554b

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.7.1.9.dev202304221681314159-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.1.9.dev202304221681314159-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 addcd3d39faf6c1add0ab65af630f539250422f17d2b670eb2adca4991aa4218
MD5 aa7a90c0f6cb5569e85f40f0ebb88425
BLAKE2b-256 73ad7703201b9bddc8665e032eb636813ffc1e6a80fa62ee4a47a7647a1fdab5

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.7.1.9.dev202304221681314159-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.1.9.dev202304221681314159-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 d6a8c05a34146a41960cfcce2d5ade78ee9806fe5e6dd172a2b2d7d7ed62135b
MD5 d7234492076991156f8274fa024f627e
BLAKE2b-256 b882463fd9c8ba9a9eb1810c53c2811528418ff059f4ec4046571926fcbdb45a

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.7.1.9.dev202304221681314159-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.1.9.dev202304221681314159-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 0086334b5b4829847d0bd5e36bdf8d0da66484d0c2de24a4ecec9f985b9179d0
MD5 ed6c00f0df86089c7cdef3013cc4bae9
BLAKE2b-256 1594c49324cd0b665511fc8f3c94ada72e765b27bef063acca241781736e3143

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.7.1.9.dev202304221681314159-cp39-cp39-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.1.9.dev202304221681314159-cp39-cp39-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 4aa163fcf5586b6208bd35d742fbf4d5959eb319127ed05c268bcb34b8f139e5
MD5 388e1948bb2e6b8692824bef1c0710a2
BLAKE2b-256 eef105fb02f425b10ae8c4ae9650f9845212c4770599e5700568a2219a7c2805

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.7.1.9.dev202304221681314159-cp39-cp39-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.1.9.dev202304221681314159-cp39-cp39-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 13a96d6570e70a49c54ca11ae953725e96684f7f8d34dd144c3b1d24a5246049
MD5 fef6fd6a4e301c66209dc2a6f79309d6
BLAKE2b-256 ee08460c07e63ce0735146b51496dffb5d997ac4b92a9af33dcd0cfac1c34b6a

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.7.1.9.dev202304221681314159-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.1.9.dev202304221681314159-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 7a036075b170d1db1d7b2458c2638c28a574752f89c30fa3cdabc85c79835803
MD5 a26f098d2b74205d031ba01673f455e5
BLAKE2b-256 5a35092362277815b7fb5c7a5f37d4f01558deaa9e8be02b6c63a431d40c1012

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.7.1.9.dev202304221681314159-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.1.9.dev202304221681314159-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 1337583a5e7955658a1c005ced2141f57ecf5a0bca84e5c4d8478568bfcb334c
MD5 54db7b9bdd4a8d7e66657af4177222b4
BLAKE2b-256 264683647958cae0896af03a6e3ceec12b4624e677f4a32d9eabf4de9421e400

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.7.1.9.dev202304221681314159-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.1.9.dev202304221681314159-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 df0a6ce43ead4fc504ae3e17bc3a452596582726a2736ac25940a5f55546edc9
MD5 37bef9b82d466e41187dace7780a1d40
BLAKE2b-256 70009eb4885fd574f0f1320bdb1dd1e274234eca8c08d8eee2d275787cc9a6e9

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.7.1.9.dev202304221681314159-cp38-cp38-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.1.9.dev202304221681314159-cp38-cp38-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 7d4bcd738de6efda72264f2be2b96aad4a93faf9ad5a89ab68811216b11c47da
MD5 a559a955abc4784dfcfee4818814a10b
BLAKE2b-256 0e54545ef1a8d76adc5973ba4008530eabc0b9dcfbb5477d0efb300d5c0b46cd

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.7.1.9.dev202304221681314159-cp38-cp38-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.1.9.dev202304221681314159-cp38-cp38-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 09d5402b6cc6713e8a62b95c6fa51a392c3fec450b759ec9460745d6ac0c4a37
MD5 b39bc7c215e3cad782e809000e2224eb
BLAKE2b-256 f98c44a0563f35a6b0601a8a5829a7d1d1229e0ecd54943d33c84299eab9be44

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.7.1.9.dev202304221681314159-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.1.9.dev202304221681314159-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 642a5eb00124bbbe06e23bebb007946af55d30fb168709a6aea97e8b0c1fd968
MD5 00421e8e0857c9716497350dddf439ba
BLAKE2b-256 08d32ca84a8eb3a9eb2eec4cb3f5d22c3da76002192c22e9315d90ad796a3d50

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.7.1.9.dev202304221681314159-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.1.9.dev202304221681314159-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 014e055c6839f19b4a3623ebcf1145f0b6378a5496ab37a5509d7972f304ce0f
MD5 24fa8a1273e1f19815a3f0212a0114e3
BLAKE2b-256 1ab4613c4276ae356339fa5bdc9416db9977bd67f9080ceb2b0a22442f82b1fa

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page