Skip to main content

Bayesian networks and other Probabilistic Graphical Models.

Project description

Description: pyAgrum is a scientific C++ and Python library dedicated to Bayesian Networks and other Probabilistic Graphical Models. It provides a high-level interface to the part of the C++ aGrUM library allowing to create, model, learn, use, calculate with and embed Bayesian Networks and other graphical models. Some specific (python and C++) codes are added in order to simplify and extend the aGrUM API. The module is mainly generated by the SWIG interface generator.

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

pyAgrum_nightly-1.7.1.9.dev202304251682179495-cp311-cp311-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.11 Windows x86-64

pyAgrum_nightly-1.7.1.9.dev202304251682179495-cp311-cp311-macosx_11_0_arm64.whl (3.8 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

pyAgrum_nightly-1.7.1.9.dev202304251682179495-cp311-cp311-macosx_10_9_x86_64.whl (4.2 MB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

pyAgrum_nightly-1.7.1.9.dev202304251682179495-cp310-cp310-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.10 Windows x86-64

pyAgrum_nightly-1.7.1.9.dev202304251682179495-cp310-cp310-macosx_11_0_arm64.whl (3.8 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

pyAgrum_nightly-1.7.1.9.dev202304251682179495-cp310-cp310-macosx_10_9_x86_64.whl (4.2 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

pyAgrum_nightly-1.7.1.9.dev202304251682179495-cp39-cp39-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.9 Windows x86-64

pyAgrum_nightly-1.7.1.9.dev202304251682179495-cp39-cp39-macosx_11_0_arm64.whl (3.8 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

pyAgrum_nightly-1.7.1.9.dev202304251682179495-cp39-cp39-macosx_10_9_x86_64.whl (4.2 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

pyAgrum_nightly-1.7.1.9.dev202304251682179495-cp38-cp38-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.8 Windows x86-64

pyAgrum_nightly-1.7.1.9.dev202304251682179495-cp38-cp38-macosx_11_0_arm64.whl (3.8 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

pyAgrum_nightly-1.7.1.9.dev202304251682179495-cp38-cp38-macosx_10_9_x86_64.whl (4.3 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

File details

Details for the file pyAgrum_nightly-1.7.1.9.dev202304251682179495-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.1.9.dev202304251682179495-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 77eb17cff9a54387a5cec9336d1120dc4909deb5d9c67daf3402a89203a03003
MD5 6495f998429bd0f1cbbdb137e8c7af80
BLAKE2b-256 d1cac82df3967378c747f90401efff62704f996c0c37ae218609e8ebe5c99494

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.7.1.9.dev202304251682179495-cp311-cp311-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.1.9.dev202304251682179495-cp311-cp311-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 261fe1d70151a9638778abaf61cf7ca7d980a1fa7a667a5e8a37c1d05959a1ed
MD5 c1c2e4235e0a664dff191d8d5e494d59
BLAKE2b-256 47dfd9745db24169480a8ed84e6ac347a1cd83b4f06db0e1f47a6f6063aed359

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.7.1.9.dev202304251682179495-cp311-cp311-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.1.9.dev202304251682179495-cp311-cp311-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 83740095b2b1dc12ba12a02fb564d9fc840ad0de733532feac901a8d31a0cf62
MD5 cfbde87f91893119ca154f3414864a9d
BLAKE2b-256 afe442393d4522e189519b205f5631bb5bb07dbc2385ed3ff1f97d23ae54dbee

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.7.1.9.dev202304251682179495-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.1.9.dev202304251682179495-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 ecc9bb1071dcf5df1cd4a6dbb8dfcd2c7710b3cc1367f9cadad600945d2684a3
MD5 324b1c05920fa714f42ec7cef8afaadd
BLAKE2b-256 d21319ad9289b48170ac7185319ae6a913d8ab04b4083c8c62f5547aa987a022

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.7.1.9.dev202304251682179495-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.1.9.dev202304251682179495-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 1234f24f2a77810a77827278539deb4fde309d93d3ecdfda5a7084eb79cb87ef
MD5 b77d5552b2c3162a29750141bf3dec1d
BLAKE2b-256 d8edf91062aa65680d3c62d79cb83aaed29938ebc5bee8a322b967e94f7689b1

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.7.1.9.dev202304251682179495-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.1.9.dev202304251682179495-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 50c0328e987815488c9937b524d2c9682c9a3ccac7b929651db491340c49d61e
MD5 6055054a63b12b678eae287c35783dec
BLAKE2b-256 13b944849d8bcd597399cfa5ee1018caeef4956340183c8212245bd7b4399e76

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.7.1.9.dev202304251682179495-cp310-cp310-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.1.9.dev202304251682179495-cp310-cp310-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 0c9fbd4c5eb5e786b29f238ff13fd92031a8f1fd668095d6df64763d9f270737
MD5 410c398f665b452abcae74e908edf5f5
BLAKE2b-256 c71740057255f757d5671f126bad99d11f9a3eba4734c0e9ca020a6e51a76dcd

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.7.1.9.dev202304251682179495-cp310-cp310-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.1.9.dev202304251682179495-cp310-cp310-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 7c5f56dd48bb11d3f8d3aa5a2266cb0464e9c2ac505dc45963053914da6bc118
MD5 337c6b63fc750e9701a786a800ca5d7a
BLAKE2b-256 5a22dd68dea1c61d005139a5e525d2833c33c50480af715934fb7f16831c60cc

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.7.1.9.dev202304251682179495-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.1.9.dev202304251682179495-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 09253a25ce671395a253f1b7d567c82bf7c03a37f2123ae5ce69289ee54d947a
MD5 409579411d800ce715ef9d7f9b90ccf5
BLAKE2b-256 5e23862aa5150995aa2945b59f767cc17cc25629e1500e61628f0f59539f1cb2

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.7.1.9.dev202304251682179495-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.1.9.dev202304251682179495-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 ed5d16b4345b937b4e60079f55e2a5b00ac6527d4a644f1f3c97324737d31f15
MD5 6252253cb3ee6651e20ae0fd914531b5
BLAKE2b-256 de6c21b814ec2b176dc43776771dda3cc8992bf87de447b79fe70190044cb03f

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.7.1.9.dev202304251682179495-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.1.9.dev202304251682179495-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 b06ecc8bef1579f7367a6215009372e7206afb5628c061c89c13d2056137cdd3
MD5 dcf808780738dbf8c19228d38c89f1e3
BLAKE2b-256 74beccff42ba5f2e0f80d7a0a3fe86cd64f99190f7c91796087e27708dbb2a48

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.7.1.9.dev202304251682179495-cp39-cp39-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.1.9.dev202304251682179495-cp39-cp39-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 c96814bc91a26e0746376f55e71db7fd8087a0c99167985a1712a23e53de8760
MD5 ba32dbf553d50e9a39d9523ca681a51a
BLAKE2b-256 1aa4dbee946c17bc4602d4fc91a1121982060fe486801ab4a38955833afc3217

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.7.1.9.dev202304251682179495-cp39-cp39-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.1.9.dev202304251682179495-cp39-cp39-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 d5bb2c57df0b61581cf917f7fd7fc00ef0e92847d4b007390ce43f16c0765ca3
MD5 a25cdb0ecc4bf2590af4daa813addfcd
BLAKE2b-256 93e905d85b9525802238691b2578c26c383482382212719bd6eef492ec0ca07e

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.7.1.9.dev202304251682179495-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.1.9.dev202304251682179495-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 298e6dcf497beaf268b37046e4c16c9f7489b2a4444a3cfb4ccb0657a4faab16
MD5 e74a74b8421efbcbbb79fd7407439c4a
BLAKE2b-256 975c74a96c9d4253ec40400e72d64a2e192d3680b3b9dd8b3c9d0b3b64e88c76

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.7.1.9.dev202304251682179495-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.1.9.dev202304251682179495-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 40d0c701c504e88c20187e6a84027efd42c25c0bf84d0bf9885797da6044dce4
MD5 8dfc9c745b932d12430c2a8275aa794b
BLAKE2b-256 2f9a3437fe5d21904f609eb4b6037753d034d703e331406be8ab000db648b2cb

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.7.1.9.dev202304251682179495-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.1.9.dev202304251682179495-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 75eff5d891f5e4530fd3108f89c3bef3eae2f3d75f34e698ff8207052b12f1dc
MD5 fe5fcb554e53fe6367c9290d78f427c8
BLAKE2b-256 3718168aaf892040c2cb592bf275e829037a5ad963670637ed4607b0ed23101c

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.7.1.9.dev202304251682179495-cp38-cp38-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.1.9.dev202304251682179495-cp38-cp38-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 46009620f18fdbea74bebd7ddcd3590cdaa5a7af99aa10da8a7944c484be80a8
MD5 4b4d4df899de390c4e57e0d7b93c2a12
BLAKE2b-256 cd1152b57f11775ba936e7b32d5dbd7172b65ca2956617eddcf6fa0a927734b9

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.7.1.9.dev202304251682179495-cp38-cp38-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.1.9.dev202304251682179495-cp38-cp38-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 8e81bc8f9abb8f1b51ead5cfe12e4ca95f21a31314f152594720fa4f1898843a
MD5 f630e2f35217477f8e5d4c629022d70a
BLAKE2b-256 ca85be4ec496bb1e63025593136dce8b5bdfe879911f2693d8d92747cbe626c6

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.7.1.9.dev202304251682179495-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.1.9.dev202304251682179495-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 28d30a24da90e3011fb8a2049222752fed313c254bc2d2750a2060a492f60306
MD5 fc718df952e03c35b2b82f0a84409522
BLAKE2b-256 dc30c6ab7621bae7d2780cc3d59f32f7c658624c42c7b9b880a331ea2f2dba4f

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.7.1.9.dev202304251682179495-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.1.9.dev202304251682179495-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 dc38196802800c9b07dc7ec8af98af995909092d4e48ce62dee49f1455a954a4
MD5 1c44246feadc651ee465e15bf09e53ec
BLAKE2b-256 a1696716cc6d581bb89211df2f2939555b190d58a37e805d190325ee4f4fe93d

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page