Skip to main content

Bayesian networks and other Probabilistic Graphical Models.

Project description

Description: pyAgrum is a scientific C++ and Python library dedicated to Bayesian Networks and other Probabilistic Graphical Models. It provides a high-level interface to the part of the C++ aGrUM library allowing to create, model, learn, use, calculate with and embed Bayesian Networks and other graphical models. Some specific (python and C++) codes are added in order to simplify and extend the aGrUM API. The module is mainly generated by the SWIG interface generator.

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

pyAgrum_nightly-1.7.1.9.dev202304281682179495-cp311-cp311-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.11 Windows x86-64

pyAgrum_nightly-1.7.1.9.dev202304281682179495-cp311-cp311-macosx_11_0_arm64.whl (3.8 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

pyAgrum_nightly-1.7.1.9.dev202304281682179495-cp311-cp311-macosx_10_9_x86_64.whl (4.2 MB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

pyAgrum_nightly-1.7.1.9.dev202304281682179495-cp310-cp310-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.10 Windows x86-64

pyAgrum_nightly-1.7.1.9.dev202304281682179495-cp310-cp310-macosx_11_0_arm64.whl (3.8 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

pyAgrum_nightly-1.7.1.9.dev202304281682179495-cp310-cp310-macosx_10_9_x86_64.whl (4.2 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

pyAgrum_nightly-1.7.1.9.dev202304281682179495-cp39-cp39-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.9 Windows x86-64

pyAgrum_nightly-1.7.1.9.dev202304281682179495-cp39-cp39-macosx_11_0_arm64.whl (3.8 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

pyAgrum_nightly-1.7.1.9.dev202304281682179495-cp39-cp39-macosx_10_9_x86_64.whl (4.2 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

pyAgrum_nightly-1.7.1.9.dev202304281682179495-cp38-cp38-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.8 Windows x86-64

pyAgrum_nightly-1.7.1.9.dev202304281682179495-cp38-cp38-macosx_11_0_arm64.whl (3.8 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

pyAgrum_nightly-1.7.1.9.dev202304281682179495-cp38-cp38-macosx_10_9_x86_64.whl (4.3 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

File details

Details for the file pyAgrum_nightly-1.7.1.9.dev202304281682179495-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.1.9.dev202304281682179495-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 abdccda815c1a3bd46dc77cad584ccb96ac398a403f89df600b1532fc1efabcb
MD5 16c14cc0c5488d82bd72d20a0e30cc05
BLAKE2b-256 4582fd46400498c36ef24c57d8d12825e45ebb55f585dfd2fd253c549d1a258c

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.7.1.9.dev202304281682179495-cp311-cp311-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.1.9.dev202304281682179495-cp311-cp311-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 703dd7497b33ce957e6a4e4fb59264eb9411e1d039746b9c332ec4e32de94174
MD5 d276f2eb2370af04b36c29e47cd69d26
BLAKE2b-256 a988d817f0399a859b5b9e384a459f3d1f6b3c24555577f024302003ba52c7b7

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.7.1.9.dev202304281682179495-cp311-cp311-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.1.9.dev202304281682179495-cp311-cp311-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 1bdc532dd39a4f3fec6b0e81932a4a6389673b2223a633522812bdef73bc06d9
MD5 dbc3e9375e6aa45758585caa2047a1dd
BLAKE2b-256 d3f8624069dd2cb819cdcdfd26b71f63b1e9a76a841af407c26ba6e04747b377

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.7.1.9.dev202304281682179495-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.1.9.dev202304281682179495-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 d9a13c6255f2fe7ed17e3d40099f12868749cb156d565a08fe8d25c62ff90f48
MD5 7cdc5a9a9f390a18c7067ff538b02d36
BLAKE2b-256 2d71eca82d363ef6507162a703f05ce35b77e944a16ea34ad82c72a1de2743ca

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.7.1.9.dev202304281682179495-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.1.9.dev202304281682179495-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 f8978e2cb6cd933610f2ea6d1cbd707b5e906994ff9059886d81b5506503a16a
MD5 76be72b2ea5546204f4dc5983bc577e7
BLAKE2b-256 e11018c4a841f7c8fee2cb6aa5505f8e5f09b51aac43e9f676dd09f809e2bdad

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.7.1.9.dev202304281682179495-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.1.9.dev202304281682179495-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 1b81ce6e0d0f75fde20d6b893683254e49af8bf156aaf758c2588a87122d3eeb
MD5 44ab9e18defe1af52935ef301c30c38c
BLAKE2b-256 10170351f763f7d544e807630baa56f0cb9659ea626c8e264a93c28e873e990a

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.7.1.9.dev202304281682179495-cp310-cp310-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.1.9.dev202304281682179495-cp310-cp310-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 8a3c042a0e21cb62390f2f337323e5156377bf4de727d055f2562418dda7f4c7
MD5 510956457882ed2b0b6e4999c77a4868
BLAKE2b-256 a3e00022c76a29b8be0b498c60b1ee0390e39967641cd1144e7bac12927b32b9

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.7.1.9.dev202304281682179495-cp310-cp310-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.1.9.dev202304281682179495-cp310-cp310-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 e6e8a40455e16573af169582b231f428695696cbeb3236937b5a0af7495bd0f7
MD5 367a3225ea4e3ca8275127c27422ff77
BLAKE2b-256 5dd155f12885e1c75a20a9ac3a7636480258db09c521e01c45b6293275847c83

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.7.1.9.dev202304281682179495-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.1.9.dev202304281682179495-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 7d4353aba8a246be7932c59f653d4613b291171f1d32451ec79c2ddb129d73b1
MD5 19704e95cf806908e2d25dfef9d6fc24
BLAKE2b-256 0b114d2c8d0f3cb1f31a17207a4956acefd92ad75ab62511c4b80b460bd1c899

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.7.1.9.dev202304281682179495-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.1.9.dev202304281682179495-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 ff747869db549cca3e79d79293cb4b5c069d7addaf1f0f4af859814daea793eb
MD5 88a0361bb972f526f377c2909699f863
BLAKE2b-256 bf4431580b2a64e3a7f84639bd2d53b267f19cd5944ba6a69f645e4f42c1e591

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.7.1.9.dev202304281682179495-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.1.9.dev202304281682179495-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 cab9f3c74127c961557083f38fd24fc5c61e2a98e5528ac37eb148010b1c03ad
MD5 5e7ff6ac803ef6d3d6cfeb3704dce8ec
BLAKE2b-256 0d631e90aca773ff0fd2bf30f526b63a085df3d2d39a90208523e8d826425d4f

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.7.1.9.dev202304281682179495-cp39-cp39-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.1.9.dev202304281682179495-cp39-cp39-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 d5efc20367eac8ac3587ae8696ceba62716b6219a62b885b9983a66f3dc19692
MD5 e73ad3a56098e6ec9f48dad3c19652ff
BLAKE2b-256 45292beb78aff64a51e06d41ab683b1d6077f10e0bd057efc3f3f322e4c1abe3

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.7.1.9.dev202304281682179495-cp39-cp39-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.1.9.dev202304281682179495-cp39-cp39-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 4c7ea33a4117f9b11dd1374a0f42ed57c62fa17ef5d554444aac315efc00ae61
MD5 cde49218a48cff92021d325e0a1502cf
BLAKE2b-256 f6d2fa312f46a5213b81415bde5071dfe7434eebdf5f9e3ff50b664149d3f2a5

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.7.1.9.dev202304281682179495-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.1.9.dev202304281682179495-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 287049ca0062f604b9b84e6094512bf8bfc4126673e39db98a937ed9e9797750
MD5 6d5a1f7b8ff4f9236ab54bf3d73654fe
BLAKE2b-256 8ea438469253c36afcde34cb7e2df810b8d728ab37bccfe0bc3bbde1175b73c4

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.7.1.9.dev202304281682179495-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.1.9.dev202304281682179495-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 002869b8a5e6c224f51f3152a28540307b84ad1ea1f7f90ee44985c3189981ab
MD5 04b14d79cc881c46e5ca4773de6eeb0a
BLAKE2b-256 534a02c11f8e41e126409ea5d46987801e21c957616ead636046475f6b2eb37c

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.7.1.9.dev202304281682179495-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.1.9.dev202304281682179495-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 4e78852100bac9e97a7ed8956652385d07d739b0dd956f3fe361ad31b314f309
MD5 b4dac355e2f22b267e583c86f4b5d1bf
BLAKE2b-256 1252a0902bcbd4e44a5f7efcd147448fe19f83eaebf7dac9703b67824f1404a0

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.7.1.9.dev202304281682179495-cp38-cp38-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.1.9.dev202304281682179495-cp38-cp38-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 1ddfa53968b1d04410066e0d9a3d395a3aae3c7960401a4361a9b40b831a632f
MD5 eab09f13aecef6a47d08bd4ffc4db091
BLAKE2b-256 44f88dafad6daf8705b92cc0d87acb44ef5a7aaa270dbdb6f39208e99dbc2ed6

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.7.1.9.dev202304281682179495-cp38-cp38-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.1.9.dev202304281682179495-cp38-cp38-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 ef594d7d79e56da11325d236dbcb74ed96d22ea5cdd49620056cc455965a42c1
MD5 cca90d26b54e17bcffdc37f5b604e960
BLAKE2b-256 3d3d805f514b17e8ea261134999bc88cfc571472f71e0f1ed18f65f2e74741a8

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.7.1.9.dev202304281682179495-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.1.9.dev202304281682179495-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 5b3ce37a870ad8f940c4c036ea7ebedee1c5888a6cb787c18bdebf9b57223384
MD5 fc500dca538a9b392ffa62fd0241423b
BLAKE2b-256 f915f52ccc31cc548308691c7305392ca421198024da7e9a355019fff95dec66

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.7.1.9.dev202304281682179495-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.1.9.dev202304281682179495-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 8cdd9dd773a8d17b618275c602ef207a65b5d0ef221b43f4ce7723c33e73b0be
MD5 96e069c5c494dd18a38dfab8f8601fbd
BLAKE2b-256 a7d7bcb15de3833c8f4de29d8a44fef349fde36074f2dc72d54aa378266393f6

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page