Skip to main content

Bayesian networks and other Probabilistic Graphical Models.

Project description

Description: pyAgrum is a scientific C++ and Python library dedicated to Bayesian Networks and other Probabilistic Graphical Models. It provides a high-level interface to the part of the C++ aGrUM library allowing to create, model, learn, use, calculate with and embed Bayesian Networks and other graphical models. Some specific (python and C++) codes are added in order to simplify and extend the aGrUM API. The module is mainly generated by the SWIG interface generator.

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

pyAgrum_nightly-1.7.1.9.dev202304291682179495-cp311-cp311-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.11 Windows x86-64

pyAgrum_nightly-1.7.1.9.dev202304291682179495-cp311-cp311-macosx_11_0_arm64.whl (3.8 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

pyAgrum_nightly-1.7.1.9.dev202304291682179495-cp311-cp311-macosx_10_9_x86_64.whl (4.2 MB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

pyAgrum_nightly-1.7.1.9.dev202304291682179495-cp310-cp310-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.10 Windows x86-64

pyAgrum_nightly-1.7.1.9.dev202304291682179495-cp310-cp310-macosx_11_0_arm64.whl (3.8 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

pyAgrum_nightly-1.7.1.9.dev202304291682179495-cp310-cp310-macosx_10_9_x86_64.whl (4.2 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

pyAgrum_nightly-1.7.1.9.dev202304291682179495-cp39-cp39-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.9 Windows x86-64

pyAgrum_nightly-1.7.1.9.dev202304291682179495-cp39-cp39-macosx_11_0_arm64.whl (3.8 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

pyAgrum_nightly-1.7.1.9.dev202304291682179495-cp39-cp39-macosx_10_9_x86_64.whl (4.2 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

pyAgrum_nightly-1.7.1.9.dev202304291682179495-cp38-cp38-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.8 Windows x86-64

pyAgrum_nightly-1.7.1.9.dev202304291682179495-cp38-cp38-macosx_11_0_arm64.whl (3.8 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

pyAgrum_nightly-1.7.1.9.dev202304291682179495-cp38-cp38-macosx_10_9_x86_64.whl (4.3 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

File details

Details for the file pyAgrum_nightly-1.7.1.9.dev202304291682179495-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.1.9.dev202304291682179495-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 9651a09ad03a318ebb36f96494318118b50d70d2cf1ae4e7fcf9cefe6adf44c5
MD5 15e36f631d7ef7c390bc920d88a5a42d
BLAKE2b-256 51c1cb3d7219b5c7890d25008a460c0562ec056841cd4102b9d12be1d795ea45

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.7.1.9.dev202304291682179495-cp311-cp311-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.1.9.dev202304291682179495-cp311-cp311-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 0485f5ef2cadf399a029b58eb4f0c561fbf523500d2badc51b1637754dc6cf5a
MD5 854ae02f9dbcab418e635cebed6df9e2
BLAKE2b-256 8e57fd8308dce178e5a9fe2605f0465937dee80cb0c775b1b473ed2543c2d8d0

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.7.1.9.dev202304291682179495-cp311-cp311-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.1.9.dev202304291682179495-cp311-cp311-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 d65b4bf0e3d0d834baa3d6a2b224e327e4851e9a76847f7f63311077ae9bf4ce
MD5 dab932052f267b68ed4b2f45efa082ac
BLAKE2b-256 bf78572be206e4c3f75b145dc2c28a27c3f5fdf6a259e43e3192dd68cad95fc8

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.7.1.9.dev202304291682179495-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.1.9.dev202304291682179495-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 ee5f014d3ea9a96c4a582fcc7fe4598282b9e05e4fad61330868e8508eee0401
MD5 7f963cca19f898676ab1ab4364888555
BLAKE2b-256 fd9530837ac64733e8231a37e0b562d8531eacbb1742ee3f0808cadc2c5a1b70

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.7.1.9.dev202304291682179495-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.1.9.dev202304291682179495-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 f04935e56585e3660fbf4c2d423cc0c55d90e64170860dfd3c309bf3a0a4bb8c
MD5 c022821b8122d0c94818d2c97e52e0f5
BLAKE2b-256 5ed4e02383370182bbdfe14223ddbbb5f88158f2f6fa88f56b8c6cfe5ce954dc

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.7.1.9.dev202304291682179495-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.1.9.dev202304291682179495-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 56ba0dde4cb29895a394cd6e034cfda881ab7302976f56c04198d74b12c78a51
MD5 94385861b792c263d599fed8bdc038a9
BLAKE2b-256 6197d3b88bb7d1794101c49acbb96c6a90fc727f9880b6cd6a54bc73fdf6cfc3

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.7.1.9.dev202304291682179495-cp310-cp310-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.1.9.dev202304291682179495-cp310-cp310-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 e66aa6c42c111daeece6beedaf0297feb2c9ca54fd195e70ddd7a3def0d06bc4
MD5 ed6aee8c87091cc24f1772919a61790d
BLAKE2b-256 b8aa495048ca42db1595b16803568808fb85f14cccab91796ddd9d40b2b33a7c

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.7.1.9.dev202304291682179495-cp310-cp310-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.1.9.dev202304291682179495-cp310-cp310-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 e0b0e7065d49ff15d4b3bb86e17968856aa1364c1c75a960d47f77cf26f5d342
MD5 9260189ae81f98955633d4a9024edee4
BLAKE2b-256 ec41570b09be055cea21f8bc02a51a037e519eb1cc148171c0215eb2e2193244

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.7.1.9.dev202304291682179495-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.1.9.dev202304291682179495-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 884e5f02ca6fcb3009e465fdf09df7ded6b16b931a3aee68179f9eb649b74245
MD5 8bfd9657a7afe9b8cc254669cb8949d6
BLAKE2b-256 8eca22d6e9da4a8bc0828f5e50dbd7f1267104034408a275d2e953e0fe1756e5

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.7.1.9.dev202304291682179495-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.1.9.dev202304291682179495-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 36757a5e9b392dad6a212a60f63aefa7649d9640c8d6bf5439d702fcaff193e9
MD5 c20a3df1abfcf64af6c1e3798c76cc9b
BLAKE2b-256 58fd8f18a9a5ee34b63dbd2e96007758d334b32816cbc025a8978826bd1f5f36

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.7.1.9.dev202304291682179495-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.1.9.dev202304291682179495-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 61555d84fb29eef96a2d1435224c0d83e357fa2562cbd441688c3e2a7e35a278
MD5 5c745a8bd97b91be515f4a67a0517e57
BLAKE2b-256 86d47e35835b520b2ab498ed11c155180dbc13715506e84a3d6e0c6aa2df95d9

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.7.1.9.dev202304291682179495-cp39-cp39-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.1.9.dev202304291682179495-cp39-cp39-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 51f6d0feb4ec2b99b228b3d120a45f028304cf295fff75d90639c730092c9283
MD5 d5642190fc86c98d1a3e247f28b2b65a
BLAKE2b-256 8a2715dc089a1f518b109331b9912f5498ad9f4df8ad0cae08dd10f145211f9f

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.7.1.9.dev202304291682179495-cp39-cp39-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.1.9.dev202304291682179495-cp39-cp39-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 1d5b1ba3be8bba5ab64630c0528cbad9944d2524dc21f0974c181085b0be1e14
MD5 15fec8ef263235d49be7c4bce977cca7
BLAKE2b-256 daefea2c6fa96d3f6ddc3e60f8f0fd2f46379dd70202ef04663177dc9cfdc726

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.7.1.9.dev202304291682179495-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.1.9.dev202304291682179495-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 ada621314588010db756268064460a47a1822ac4115c948a1120d6ea55cfdbd4
MD5 cb2708797d974dfcd13a0172cd388f1b
BLAKE2b-256 27f7691aa0a3f5042a304fd91b45104595cc2e76c0f7a8651ba1fc1feacc2ace

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.7.1.9.dev202304291682179495-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.1.9.dev202304291682179495-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 e094a22978b4dfc53b222b830d05385a102c099bdaf3e56fd4c4ad65c9b342a4
MD5 03eff045e5d9f8124c914048c03b581a
BLAKE2b-256 818f0d0d762e4145d1d5fce9ecf1aba405de177a1af185b73628e0ed6fabc1e9

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.7.1.9.dev202304291682179495-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.1.9.dev202304291682179495-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 4c53966689fe08060bf0d37686a7009661cf4ef29e1c5304015cca3a64e57f8d
MD5 f389bb4aa152f08f3efa0b5f4f0ff879
BLAKE2b-256 70493aed169f6968fe8cd711deb61fed2f263358e226e4dc3d95903ae9758312

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.7.1.9.dev202304291682179495-cp38-cp38-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.1.9.dev202304291682179495-cp38-cp38-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 73a9e537cda06620ddca93263d5d8f9eb0a18c50afd87c07c912b1e900a52485
MD5 120e36825cfdf2f22e800e9609058e6d
BLAKE2b-256 344151b483cdb400983d553668cca797e34331c588dcf139cddd3ec605636363

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.7.1.9.dev202304291682179495-cp38-cp38-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.1.9.dev202304291682179495-cp38-cp38-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 988c85d5ae478ab64f873ea59324288fe16b0de73efaad08a71f6f9e72e93789
MD5 6a091119534937737ac9703e03d21c55
BLAKE2b-256 7a0b5f3cd5201bc7d40d48c41e5424043817525252ad1375783c47bc215e4f59

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.7.1.9.dev202304291682179495-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.1.9.dev202304291682179495-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 195bf242d19c43fc80fb522d913be99e7ca92fd71b4174cd0191a99352cbee57
MD5 1e8612e3a58f13338199d58d9856aded
BLAKE2b-256 f4b933eb62bd11a08aedcba6efbee5a61f352ba444423f5901b05e751b26eb7a

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.7.1.9.dev202304291682179495-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.1.9.dev202304291682179495-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 5c7981ebc99940b34cac177571d04fe8c4bc34c9a2b2c6af2ea6a00554c298ff
MD5 8e0b7b0adce260433725bd2569fad5c1
BLAKE2b-256 8ad525fb12eef06304b165d2d480444d7d9af13ed3f18015968fee9f72cf8639

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page