Skip to main content

Bayesian networks and other Probabilistic Graphical Models.

Project description

Description: pyAgrum is a scientific C++ and Python library dedicated to Bayesian Networks and other Probabilistic Graphical Models. It provides a high-level interface to the part of the C++ aGrUM library allowing to create, model, learn, use, calculate with and embed Bayesian Networks and other graphical models. Some specific (python and C++) codes are added in order to simplify and extend the aGrUM API. The module is mainly generated by the SWIG interface generator.

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

pyAgrum_nightly-1.7.1.9.dev202304291682760403-cp311-cp311-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.11 Windows x86-64

pyAgrum_nightly-1.7.1.9.dev202304291682760403-cp311-cp311-macosx_11_0_arm64.whl (3.8 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

pyAgrum_nightly-1.7.1.9.dev202304291682760403-cp311-cp311-macosx_10_9_x86_64.whl (4.2 MB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

pyAgrum_nightly-1.7.1.9.dev202304291682760403-cp310-cp310-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.10 Windows x86-64

pyAgrum_nightly-1.7.1.9.dev202304291682760403-cp310-cp310-macosx_11_0_arm64.whl (3.8 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

pyAgrum_nightly-1.7.1.9.dev202304291682760403-cp310-cp310-macosx_10_9_x86_64.whl (4.2 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

pyAgrum_nightly-1.7.1.9.dev202304291682760403-cp39-cp39-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.9 Windows x86-64

pyAgrum_nightly-1.7.1.9.dev202304291682760403-cp39-cp39-macosx_11_0_arm64.whl (3.8 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

pyAgrum_nightly-1.7.1.9.dev202304291682760403-cp39-cp39-macosx_10_9_x86_64.whl (4.2 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

pyAgrum_nightly-1.7.1.9.dev202304291682760403-cp38-cp38-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.8 Windows x86-64

pyAgrum_nightly-1.7.1.9.dev202304291682760403-cp38-cp38-macosx_11_0_arm64.whl (3.8 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

pyAgrum_nightly-1.7.1.9.dev202304291682760403-cp38-cp38-macosx_10_9_x86_64.whl (4.3 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

File details

Details for the file pyAgrum_nightly-1.7.1.9.dev202304291682760403-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.1.9.dev202304291682760403-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 baba4366a829f3abf24c9bd4e908a8174db152dda7269ab3b8615b00fc3d8ed9
MD5 bc4205afdfe36c60ca27e2592ff6da58
BLAKE2b-256 35b09036cdbab194de47200638efa8acabd094502441700235fde057c82ff829

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.7.1.9.dev202304291682760403-cp311-cp311-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.1.9.dev202304291682760403-cp311-cp311-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 0be1ecdcc039681f7aa88eb4cf568abadf6da83f44e637ab934e7230fafb68bf
MD5 c87b5b0429842e8b225674c90cc16a7e
BLAKE2b-256 ff93007e78f2247755673062caa50abd34973a182b8bf4a81f6bf377a48d3e6e

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.7.1.9.dev202304291682760403-cp311-cp311-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.1.9.dev202304291682760403-cp311-cp311-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 55dd3a9027d9cc89b6f12aecfd0c9fff10e79da2c820d64869ceb5c6da207ddd
MD5 7d55bcbe17421093e6981a5cc88eaf9d
BLAKE2b-256 20a15ae92386baf9715ea9145a3a41ced39ef50d2d1dbfb9232509d2fe3bf532

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.7.1.9.dev202304291682760403-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.1.9.dev202304291682760403-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 3ef335b6fa76a46ea187f824ad316b5bbe6d3eb25dd3fd61070ee0af8535300e
MD5 0e5ec27d5f53eb8cafe9bf4f6ad2b31a
BLAKE2b-256 5c8cdb2721a8588be9f47153969abbd36474ca6630987ec6a5fbe061a94a0006

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.7.1.9.dev202304291682760403-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.1.9.dev202304291682760403-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 a02f7ffb639d8d1a9b26738158669cffd68e33bd9b7774ad7c02096a14e7f426
MD5 fa9ff9d3d9ad3427ad5ce7cbebbfd386
BLAKE2b-256 c985cd8042e812d42ac101e25bcb7a1c6249d4f42d4aaa8a32c74c617f32ec51

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.7.1.9.dev202304291682760403-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.1.9.dev202304291682760403-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 24ed7815e379196959d2f9031b5b70c61e30958897a34aa63f34c54cf9042114
MD5 5b1ea0a00d66a7b2ca17394eeb3a5c90
BLAKE2b-256 8c522ce0d4ed8d1ed8c3cc717e5f93ea65a207164f9a5c25bef6f65172eb475d

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.7.1.9.dev202304291682760403-cp310-cp310-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.1.9.dev202304291682760403-cp310-cp310-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 9445a6f948e2984d0a7e08abab8d58d1b7b049f205de3d3c94692614397d5ede
MD5 ddfd76dfa70206cb767263ff0a21c788
BLAKE2b-256 737da65e9d021d0177911ff988131c5b9b8533fdb21b66e96557933d9c8e02c1

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.7.1.9.dev202304291682760403-cp310-cp310-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.1.9.dev202304291682760403-cp310-cp310-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 d25183716539a013c0866c9ad39711329d9410c243e1aa283b224010d658682c
MD5 a0211c9d2173918692c3e42c2e3bc497
BLAKE2b-256 09f5c01c3478a1c24df8ce75e15afb7eef3572965114cb2eddcc60e04679e59f

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.7.1.9.dev202304291682760403-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.1.9.dev202304291682760403-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 29b233c389cd13bd69dd6e955c26a788c5cd2c2950bd3d4060641a5bfe9878c8
MD5 bbaf37b51222fda0f2e59d215cc08518
BLAKE2b-256 c3a7824c8042f16fc2cec76795cf64ebfaef79c6536cd2bc7e01b3d8f2e217e9

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.7.1.9.dev202304291682760403-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.1.9.dev202304291682760403-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 dd1e86752759456a0c73fc1c7dcda8c49eddac06c511d376457233981f9b80f4
MD5 f0298610dab8ed833464c7aa50ab3421
BLAKE2b-256 93d6151f161347a290aa60bf1e0b5cf09d77892446819fa55da05fb9dd4b6e8a

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.7.1.9.dev202304291682760403-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.1.9.dev202304291682760403-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 e4ec68bb7a634fff6680ae471cbaa381aa0f5bafebee5a8bb860aa0f007940ac
MD5 badce46579fccedd75de5879be865117
BLAKE2b-256 e0d553ec1a47666a9a4a5a56499bfa35cf2b2ca72822fbcc73539f063ca92409

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.7.1.9.dev202304291682760403-cp39-cp39-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.1.9.dev202304291682760403-cp39-cp39-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 80ec534b29fb04468934d8f676e2b98f472939f7c2a5ad8cfaf224474258c08f
MD5 de6d9bb2964945b170b3ea0b50ddaa4d
BLAKE2b-256 d5feb17a4457cec59823f5cffb2d88dfde68f4e6e668645373a07ff830f9e7aa

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.7.1.9.dev202304291682760403-cp39-cp39-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.1.9.dev202304291682760403-cp39-cp39-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 78e47c50d5529d07c305e8378f7b41d7f554e9bb5e303396cb49ddcb103c655b
MD5 125b6212d4c8052864dc712f101adc0d
BLAKE2b-256 28aaf2bc45d6b6dc1aa9f27e30aba83baa9a986d1b856f15db3ec31b94b91954

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.7.1.9.dev202304291682760403-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.1.9.dev202304291682760403-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 cbc263531a9ec7657824451f99b261a0b5b13b5d06c042b93fd53b5c65cfbe37
MD5 80c7c2ee5c54f0f15fd3d19cedb4a04e
BLAKE2b-256 86dea703118ce0896948873bcf2369867c2f3275f5fe0dc2c3e0c49a698f091f

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.7.1.9.dev202304291682760403-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.1.9.dev202304291682760403-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 06c771c68dfd44c015fb7570b7992ebebaa61eb1a4cdc3d0d7476d9fd13f9cae
MD5 0c757b6f4fafac079d94b00d7631d9b8
BLAKE2b-256 07054d0f99d4c2e5a655bdfa46ea395d9c56781d799a8e59117b5a83d243e770

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.7.1.9.dev202304291682760403-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.1.9.dev202304291682760403-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 d574edbbb3b47069e7cd57386e3d035939608bfe30a5c8052bf0f3b1c43b0159
MD5 f831ed64f6be2ba885d54ca2bf7ad563
BLAKE2b-256 bb62cf740d133fd24a62099237164101da10c635c2a82b79a4ed46184e1a0baa

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.7.1.9.dev202304291682760403-cp38-cp38-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.1.9.dev202304291682760403-cp38-cp38-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 3f76705c5bb88b9408a18ffd14cd5abdaf6284807817b0c1747df3e003af8ff8
MD5 30db2fd9c1968f87a01c393a7532c837
BLAKE2b-256 11565278ddfdbf8888dbb5e5adbee52b165b842c65ebe36346a2c9386910d9e8

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.7.1.9.dev202304291682760403-cp38-cp38-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.1.9.dev202304291682760403-cp38-cp38-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 d59801db1e34ba3657efc2224468e188a72cd4563a9acbd3a45a2c1e3cb6df32
MD5 aa115250bd4d1493c7263ea759712f90
BLAKE2b-256 0f087a6be64e2720f2cd3028ca0177534720cf028aab6e0f0f7bc819eb8a1251

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.7.1.9.dev202304291682760403-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.1.9.dev202304291682760403-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 7fafd453922e026947278d633f9b5f441ec72478195130abeb27c698bb31623d
MD5 e44a26ff8fa409cb19daad3ae4a05c49
BLAKE2b-256 59faa9e07e7453d38dde0199976f2aeca912636b79d0804644f9ce3d2acf33ea

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.7.1.9.dev202304291682760403-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.1.9.dev202304291682760403-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 c9bfcd6cf41e30f005eb3f35ad0ee546dac2641eec122de607120701c021b367
MD5 df553a3387a3ac51ead4db4b8fbb1f85
BLAKE2b-256 dab9b4fa9c4fe735c8bab2fe0a8facdf1f0da7a7863c240f169adb3c36c333b1

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page