Skip to main content

Bayesian networks and other Probabilistic Graphical Models.

Project description

Description: pyAgrum is a scientific C++ and Python library dedicated to Bayesian Networks and other Probabilistic Graphical Models. It provides a high-level interface to the part of the C++ aGrUM library allowing to create, model, learn, use, calculate with and embed Bayesian Networks and other graphical models. Some specific (python and C++) codes are added in order to simplify and extend the aGrUM API. The module is mainly generated by the SWIG interface generator.

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

pyAgrum_nightly-1.7.1.9.dev202304291682774691-cp311-cp311-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.11 Windows x86-64

pyAgrum_nightly-1.7.1.9.dev202304291682774691-cp311-cp311-macosx_11_0_arm64.whl (3.8 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

pyAgrum_nightly-1.7.1.9.dev202304291682774691-cp311-cp311-macosx_10_9_x86_64.whl (4.2 MB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

pyAgrum_nightly-1.7.1.9.dev202304291682774691-cp310-cp310-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.10 Windows x86-64

pyAgrum_nightly-1.7.1.9.dev202304291682774691-cp310-cp310-macosx_11_0_arm64.whl (3.8 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

pyAgrum_nightly-1.7.1.9.dev202304291682774691-cp310-cp310-macosx_10_9_x86_64.whl (4.2 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

pyAgrum_nightly-1.7.1.9.dev202304291682774691-cp39-cp39-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.9 Windows x86-64

pyAgrum_nightly-1.7.1.9.dev202304291682774691-cp39-cp39-macosx_11_0_arm64.whl (3.8 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

pyAgrum_nightly-1.7.1.9.dev202304291682774691-cp39-cp39-macosx_10_9_x86_64.whl (4.2 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

pyAgrum_nightly-1.7.1.9.dev202304291682774691-cp38-cp38-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.8 Windows x86-64

pyAgrum_nightly-1.7.1.9.dev202304291682774691-cp38-cp38-macosx_11_0_arm64.whl (3.8 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

pyAgrum_nightly-1.7.1.9.dev202304291682774691-cp38-cp38-macosx_10_9_x86_64.whl (4.3 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

File details

Details for the file pyAgrum_nightly-1.7.1.9.dev202304291682774691-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.1.9.dev202304291682774691-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 c7ef871195730e696304192386c93fa33dc99e5d46b7c055abadfbc50db7b42a
MD5 c62b372d96558e509b0d322019d3b785
BLAKE2b-256 9929261cfb1a3361bcae5370df6bbf864f8cc60c4ce51b0e38177d4629f1bdd6

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.7.1.9.dev202304291682774691-cp311-cp311-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.1.9.dev202304291682774691-cp311-cp311-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 263ef22cd84c6312a2a76a28990a3af894300d43db7939a1363ce380df71710a
MD5 d195b072c3424346b97481ede574452f
BLAKE2b-256 ee13707c51d00f5a5891d7365a8ccfb3ea95341fdb90966768df2af0ad7f1568

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.7.1.9.dev202304291682774691-cp311-cp311-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.1.9.dev202304291682774691-cp311-cp311-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 1f17f693b1c68a6ddc3771a89af9799a601aa361b9f7308a2b681d8a2d7cbc16
MD5 01d6ae2abc56e4daf01eb1f7d6f252b4
BLAKE2b-256 7dc18480bf22cdfaed4122d8218e939415d9a8010320e75053275b94ccda4995

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.7.1.9.dev202304291682774691-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.1.9.dev202304291682774691-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 b2e637c70e5d78740897205333bda9607315225278dc850a5b6b9c9804a31edb
MD5 29201ce091130c3a6faf6c4272f9f108
BLAKE2b-256 c869ceead61d503cdf400df3b929c14088a369f227e4cf5baa37ac4403ec4265

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.7.1.9.dev202304291682774691-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.1.9.dev202304291682774691-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 af7b9d29134b30e93d21b60d7cec4f5f183354d80258b2697faa7ccac086688c
MD5 ccefa11caeb648795a0ec37f827d867c
BLAKE2b-256 3df2ed65b019d52c79bdc9c32c528f2bc3b66beb4378c12117aacf552453cc49

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.7.1.9.dev202304291682774691-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.1.9.dev202304291682774691-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 59e63547f675f16ea28986e788fd0cc3a6bdaeec7eda49d22ab3e87a106ba131
MD5 b55e5ddc5ba4947953f04c10bbb6d749
BLAKE2b-256 28819a0296422607217bcd90a6ae00e8b299e37a085b0dccbf4e0d15b35dc437

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.7.1.9.dev202304291682774691-cp310-cp310-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.1.9.dev202304291682774691-cp310-cp310-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 367f779012c56d4b88fca5ac7fbadd21329e4da5ec63b490c41ea57b22f1bc8c
MD5 82ae01a26834210011aebbd823320322
BLAKE2b-256 28d17d9942eef6b2fa06673ac7bcdd057ce6e359dd48557b046a3b285f6bc56d

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.7.1.9.dev202304291682774691-cp310-cp310-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.1.9.dev202304291682774691-cp310-cp310-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 36279f3ef56d63aefe7e2f976ca8b360c8335f64c2498760a12c14e98fcdc965
MD5 20728a3be1fbaa5292d80269af34b2cc
BLAKE2b-256 9822afc53a62439ab2e2b3017f0684b7f43dd4d8a6cbb24fabdf88407cbcdf02

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.7.1.9.dev202304291682774691-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.1.9.dev202304291682774691-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 03557e42263e1bec7364c2036cdf216750f76b30be71422a1625ca205eb09f86
MD5 f7bf01ad32b81b5578697694c8c6e26c
BLAKE2b-256 000c362b4d3762fdbdc97f016a9d3fdf11b310680b02ef0adddecb49acf93d54

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.7.1.9.dev202304291682774691-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.1.9.dev202304291682774691-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 e41ef5e16eb1dc80c5bd9125c64ed159b0531d0532cfb5b99d1e4230cc51aeda
MD5 6238f83a82ffb85b1a3d415541bd69eb
BLAKE2b-256 41ba310b9dced90568c8e91eb296b97403864eff5917cb428e0d52f1f1dd2d05

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.7.1.9.dev202304291682774691-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.1.9.dev202304291682774691-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 49c58e2328ccec821bb089814b9c8f6538c8f700f18e7e1cf65101a23f5730da
MD5 d63cef84f329a3cadabf0aa5789082a2
BLAKE2b-256 e0e5a918d7a3f245a4f007dad00c71f4ac2d3995f4d5c821731a3f21b5fcf536

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.7.1.9.dev202304291682774691-cp39-cp39-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.1.9.dev202304291682774691-cp39-cp39-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 22bffe948a97fd61715e751d31ea795b244a1e6fa75053f3a95a7d41dcb5bacf
MD5 9ec0ab2de0b88a826f4f66000bfe186a
BLAKE2b-256 21bc488e855e2afd0b77fdd049bafe2b28fe0a215dc6b17e31d059228492c7b6

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.7.1.9.dev202304291682774691-cp39-cp39-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.1.9.dev202304291682774691-cp39-cp39-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 519ef6caeb7cdc20ff490d1ddf5b5437d2b7c95904799a555a783b6ccdcbc23d
MD5 01559c24909d63b3d5ce2733e3040ddf
BLAKE2b-256 bf0d14c9d14fb580786f030fadfba729f09bdbccd2a42b7a563228764fd707da

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.7.1.9.dev202304291682774691-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.1.9.dev202304291682774691-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 fe79f949185fc206a5063826361c7fe6e8c8ef0f0651c07d70279f3891b957f4
MD5 5ef89c9496f205223fc5ef8b13aae41a
BLAKE2b-256 cf4febd9fd323e8943641fbbafc4245676820bc20dd98ad9110648dded77894c

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.7.1.9.dev202304291682774691-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.1.9.dev202304291682774691-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 bb2084c286e07abafd93207a03971ed64aae8b67470968fcb680594ff3cd8089
MD5 e9ba2a52e106e3033b33f754b17e9a08
BLAKE2b-256 71b4c774ecee3216951fc3840364cd7ac3d2b23784edac72141e6e360d3fb53f

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.7.1.9.dev202304291682774691-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.1.9.dev202304291682774691-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 3dbe86a39d8254b9d7835cd8d8184d04f1df49e4b716de8b7472830e7a891bfb
MD5 9f050441adfedbc5068232f03fdb4bbb
BLAKE2b-256 25abbd60f08b54f4e9bebbcded0f414ab0e8b960a2269beff96714c044278d7e

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.7.1.9.dev202304291682774691-cp38-cp38-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.1.9.dev202304291682774691-cp38-cp38-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 4d159e1a547b9a766cfbe7c889599684afe50507131515ba1e0bb7b08296d8be
MD5 bbef74b46b05bb021df5adccb07f9897
BLAKE2b-256 40f06fa65a266eeaadea6456e79c41e4a40f7ba4a86f8a7787756c640ea6f858

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.7.1.9.dev202304291682774691-cp38-cp38-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.1.9.dev202304291682774691-cp38-cp38-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 7c054b78acdc50e37956ab62086be0fcd66ba067fe423cec8ff0bbca072996ea
MD5 5d51aacee1300ae3cd8747f6af9a1eab
BLAKE2b-256 a9e0440ae3a7bc7b03083b1666ca63e912d3e9684377143bfcd2c93a5d7e1b64

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.7.1.9.dev202304291682774691-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.1.9.dev202304291682774691-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 53f5d3f3e611dd083686d5f093c24cd81870ac772cb4868e4d49fd70367cde6a
MD5 cd4b40c20bc303a6166fd91c5560c5fe
BLAKE2b-256 7032bfc76a0b1d7aafac16dc498e31dec4a6f006247da1132612eed0c8825518

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.7.1.9.dev202304291682774691-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.1.9.dev202304291682774691-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 674cc40308dff627d650535062b6d2d3fc32a11464066cea04cacfedd3bbc211
MD5 1b6717b0cfaba2f7273ab3d3ccf23ecf
BLAKE2b-256 06e7e33d3e0275781e4379dabf231b42b2a610013f922de4c6f97dd34b593bd9

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page