Skip to main content

Bayesian networks and other Probabilistic Graphical Models.

Project description

Description: pyAgrum is a scientific C++ and Python library dedicated to Bayesian Networks and other Probabilistic Graphical Models. It provides a high-level interface to the part of the C++ aGrUM library allowing to create, model, learn, use, calculate with and embed Bayesian Networks and other graphical models. Some specific (python and C++) codes are added in order to simplify and extend the aGrUM API. The module is mainly generated by the SWIG interface generator.

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

pyAgrum_nightly-1.7.1.9.dev202305061682913970-cp311-cp311-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.11 Windows x86-64

pyAgrum_nightly-1.7.1.9.dev202305061682913970-cp311-cp311-macosx_11_0_arm64.whl (3.8 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

pyAgrum_nightly-1.7.1.9.dev202305061682913970-cp311-cp311-macosx_10_9_x86_64.whl (4.2 MB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

pyAgrum_nightly-1.7.1.9.dev202305061682913970-cp310-cp310-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.10 Windows x86-64

pyAgrum_nightly-1.7.1.9.dev202305061682913970-cp310-cp310-macosx_11_0_arm64.whl (3.8 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

pyAgrum_nightly-1.7.1.9.dev202305061682913970-cp310-cp310-macosx_10_9_x86_64.whl (4.2 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

pyAgrum_nightly-1.7.1.9.dev202305061682913970-cp39-cp39-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.9 Windows x86-64

pyAgrum_nightly-1.7.1.9.dev202305061682913970-cp39-cp39-macosx_11_0_arm64.whl (3.8 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

pyAgrum_nightly-1.7.1.9.dev202305061682913970-cp39-cp39-macosx_10_9_x86_64.whl (4.2 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

pyAgrum_nightly-1.7.1.9.dev202305061682913970-cp38-cp38-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.8 Windows x86-64

pyAgrum_nightly-1.7.1.9.dev202305061682913970-cp38-cp38-macosx_11_0_arm64.whl (3.8 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

pyAgrum_nightly-1.7.1.9.dev202305061682913970-cp38-cp38-macosx_10_9_x86_64.whl (4.3 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

File details

Details for the file pyAgrum_nightly-1.7.1.9.dev202305061682913970-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.1.9.dev202305061682913970-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 0634df1bb44a6b350832677738ac1533f4b934ebc01076c4d3a9078a0987859c
MD5 55f60d142e266e101d579f76bcb1c7d7
BLAKE2b-256 134876bce19cb8142d9066eda470f485d32fabe3996e6f999dbb0143d2a0f838

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.7.1.9.dev202305061682913970-cp311-cp311-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.1.9.dev202305061682913970-cp311-cp311-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 93e9191fc9ede1a79db10c58c9ed88d4c218bc1f1e23fe647c852c86ed00d904
MD5 dbe7d173dbe643be51bac59193da5a7f
BLAKE2b-256 fadbc2d634229c2aaaadc44031ed9a12029fc0ad11ad81422d323a50d810ee4e

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.7.1.9.dev202305061682913970-cp311-cp311-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.1.9.dev202305061682913970-cp311-cp311-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 151bccd7ed10fbbcbcacfe1ec03a4756c51157a6f72fe7dd770a05264384eff1
MD5 68e2522e9e4c47499ca391a39e144cce
BLAKE2b-256 d2d83fbc6307590d570913f1226c52d2c6f6e4ee008b30c801382bf8e97f7781

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.7.1.9.dev202305061682913970-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.1.9.dev202305061682913970-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 9f0ebb3ff6d8dce761f3fb71b63913e73c1db42ad4aeaed3974c2166556d74ab
MD5 e2276b81a0657a1cdedc597224dd88a3
BLAKE2b-256 b8499241d83edbb539df0703c4901dafd0ec64d1119ce59d2f45bab3830f12f2

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.7.1.9.dev202305061682913970-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.1.9.dev202305061682913970-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 40869d1b6afd52705059b8c2597f8f8ab2b96a43ecdb0c33d87533d29ce48ba0
MD5 c759901a14aa0a640dcfddfa219832a6
BLAKE2b-256 d6478c702acb13e217f325a15d7c49797d8dbf81c5c61fe3ba767b91a4965217

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.7.1.9.dev202305061682913970-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.1.9.dev202305061682913970-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 4f5d7078d981fd6d78f6aef02c98ce052107fb219eba007f907658ad40bc97d9
MD5 22d7db4491ae132e5146aca391032211
BLAKE2b-256 101a8c4ebfb932ad78140c3311ab0decdd1a516095f9fc48d3ecdf784b009402

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.7.1.9.dev202305061682913970-cp310-cp310-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.1.9.dev202305061682913970-cp310-cp310-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 392700fca0db42b3b92bd3362117348900c2cbdf69808d583789d92886857507
MD5 7aaa9c6330ce7530ebc0606b0c0fe2b6
BLAKE2b-256 051e5daf37c682f1519a5289418e193c24e7fedfc83d2c274d070b85c0c14d78

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.7.1.9.dev202305061682913970-cp310-cp310-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.1.9.dev202305061682913970-cp310-cp310-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 99249efab3be80cc7a0fd8950cd44065e6f3f550c0ae384ec223075c0ea00279
MD5 263d09dd811ce96687f3d8ad6e737c6f
BLAKE2b-256 9ec6fcc0b6f42640c95a1ef411bb867ab25080eea89177a4688b45f98bf944d4

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.7.1.9.dev202305061682913970-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.1.9.dev202305061682913970-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 b807604dc66ca127ac996f0410b48b04e569c8ef9c1ead5a0aa171516853e731
MD5 9420b7988548836322877bdaae2dd47c
BLAKE2b-256 b299f3ae3d366b308937333dc738a3d9dbce0e8f64d23c33a5ca454c579d0802

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.7.1.9.dev202305061682913970-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.1.9.dev202305061682913970-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 19fc0850b1f31f6df1178405c4858e7c5bb4f4454fad5575cdf3e3db01ca2246
MD5 4103cbe1ab43633123e2c4c649e85c87
BLAKE2b-256 89c27452dcb605619d7a056a76f8ae1f2ae8a7d6c677a12d6d20c9e52fa5ae07

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.7.1.9.dev202305061682913970-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.1.9.dev202305061682913970-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 0db78ab3ccb64c19c53fa764ee0f2cd097f93beb46644c2cebbdf3221ecebfb6
MD5 e06df18e374da2ecf0e9698bb5a242bd
BLAKE2b-256 d4fb9672eb1d52f91857c0d350b872026029531c0c1dbec11d50e2be56259072

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.7.1.9.dev202305061682913970-cp39-cp39-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.1.9.dev202305061682913970-cp39-cp39-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 6c6b082a64ec32f371d6d7bcc4edd64f54275f306595a23c14a5b7e037d6fac8
MD5 09ba854e922b45d60385e32d569751c1
BLAKE2b-256 1906d89e99e6bfff7efd4b185878b9306896a4feabba7a2bed56970ee8540450

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.7.1.9.dev202305061682913970-cp39-cp39-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.1.9.dev202305061682913970-cp39-cp39-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 d115dc521108dfd9b999d91e52c63ba4a91b12d5ab72ea8e56b7dec4e045d143
MD5 c4ecedd2e4263ed79da7b6e261964d9b
BLAKE2b-256 ffd06cff26297bdbebcc83e3bae84bb8a08bf05dc83e2808ef8839c368e38c69

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.7.1.9.dev202305061682913970-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.1.9.dev202305061682913970-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 5935a86ec09c7d7f421b878ccf569686d9e726e9aff076f271d71244fb123e2d
MD5 c8f176154972d2f7605cdcf6cdb99066
BLAKE2b-256 1f4b24ff3b099de8b8e3c7f1c520ce45099d11a2ce27c965d80595b7d37ad44f

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.7.1.9.dev202305061682913970-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.1.9.dev202305061682913970-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 887124187cc3b90cbd5406d61f004a4650be83966b296f7ff69d99207edead61
MD5 bbf133a477226a8a40b39b85f500c862
BLAKE2b-256 d8824776b902d1500605fa135b865d3856175e5fc53dcfd4b82e6181281e955d

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.7.1.9.dev202305061682913970-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.1.9.dev202305061682913970-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 adcd9c222e887e3fe311b03f56ee34a5e458aea65c3e8057b6ab493bd9e55b98
MD5 68473ded75972ccc57483099dc993d50
BLAKE2b-256 027b8ad897013592c74326fbd3ba0deb03cda3e8f232ff15d506acabf5f21b83

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.7.1.9.dev202305061682913970-cp38-cp38-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.1.9.dev202305061682913970-cp38-cp38-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 98b5a8d10ad3c6f12198ccb510b1b67f817a0046d6e300032ac65f06b6bf928a
MD5 1cdb61256aad1dc38aff375c0dd63d10
BLAKE2b-256 656165f3cdfc78c111b69bbe819f5b23b33fe2e6168fb825416cac99c9c4a42c

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.7.1.9.dev202305061682913970-cp38-cp38-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.1.9.dev202305061682913970-cp38-cp38-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 2f5359a67d0a574bf5e97334fad0a714d1b983ee5ca55e955cfc9f73fcdfc3ff
MD5 60619bd5b1d50d42a2c794424c18ebd2
BLAKE2b-256 21696b40748cc17e93dfcd4c3f10eb955dc677ccc0bbd18e037c04cfadc8f47d

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.7.1.9.dev202305061682913970-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.1.9.dev202305061682913970-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 00900f7224ee8799538140f4939d9c366793adf06a37c37f462e291720343016
MD5 02898a846876f117e9c403e20325d5d1
BLAKE2b-256 e3ba89ecc0f4f245ece6effcd25705bfbd0090bb0f0889b8616bcf59575af59f

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.7.1.9.dev202305061682913970-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.7.1.9.dev202305061682913970-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 8d2801eb0552738ed4560ccb8f34061f43503b37b9f7f3b01d8a7502c4f5ba6f
MD5 7323ba529080540bac3179f69422c1a7
BLAKE2b-256 d7255c31fb9afd921bab6786aec9e1a478f2f3edc7b2d53440122453d93c667a

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page