Skip to main content

Bayesian networks and other Probabilistic Graphical Models.

Project description

Description: pyAgrum is a scientific C++ and Python library dedicated to Bayesian Networks and other Probabilistic Graphical Models. It provides a high-level interface to the part of the C++ aGrUM library allowing to create, model, learn, use, calculate with and embed Bayesian Networks and other graphical models. Some specific (python and C++) codes are added in order to simplify and extend the aGrUM API. The module is mainly generated by the SWIG interface generator.

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

pyAgrum_nightly-1.8.0.9.dev202305101683651297-cp311-cp311-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.11 Windows x86-64

pyAgrum_nightly-1.8.0.9.dev202305101683651297-cp311-cp311-macosx_11_0_arm64.whl (3.8 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

pyAgrum_nightly-1.8.0.9.dev202305101683651297-cp311-cp311-macosx_10_9_x86_64.whl (4.3 MB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

pyAgrum_nightly-1.8.0.9.dev202305101683651297-cp310-cp310-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.10 Windows x86-64

pyAgrum_nightly-1.8.0.9.dev202305101683651297-cp310-cp310-macosx_11_0_arm64.whl (3.8 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

pyAgrum_nightly-1.8.0.9.dev202305101683651297-cp310-cp310-macosx_10_9_x86_64.whl (4.3 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

pyAgrum_nightly-1.8.0.9.dev202305101683651297-cp39-cp39-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.9 Windows x86-64

pyAgrum_nightly-1.8.0.9.dev202305101683651297-cp39-cp39-macosx_11_0_arm64.whl (3.8 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

pyAgrum_nightly-1.8.0.9.dev202305101683651297-cp39-cp39-macosx_10_9_x86_64.whl (4.3 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

pyAgrum_nightly-1.8.0.9.dev202305101683651297-cp38-cp38-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.8 Windows x86-64

pyAgrum_nightly-1.8.0.9.dev202305101683651297-cp38-cp38-macosx_11_0_arm64.whl (3.8 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

pyAgrum_nightly-1.8.0.9.dev202305101683651297-cp38-cp38-macosx_10_9_x86_64.whl (4.3 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

File details

Details for the file pyAgrum_nightly-1.8.0.9.dev202305101683651297-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.0.9.dev202305101683651297-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 30610301c37ddded0e7ee2a523cd6062581ef47cb1433a9fb39a89dcdacc79b5
MD5 8e37cfebd24f2a0efddf9ddfc030cc89
BLAKE2b-256 2c2ef28593bcb596934b78459e61643ef0856c4e33a95e422fc1ec0e103991ae

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.0.9.dev202305101683651297-cp311-cp311-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.0.9.dev202305101683651297-cp311-cp311-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 4f1a1129b12aa4a0550e96b4df50fe8302dc8a7c658dbc16e60e3ecd74d68df4
MD5 8316890cf85e763bfe05f312b3f01f59
BLAKE2b-256 a18f5f3da357b2b63c411bf7524a0358562bb61cc99aef063b32b2680d00e87b

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.0.9.dev202305101683651297-cp311-cp311-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.0.9.dev202305101683651297-cp311-cp311-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 6a74e691719185c2f255f8d0e151b3b78974c95c57e847206c47a65729adf8cd
MD5 788e95f19ad2da0ad7d6da67189a9b95
BLAKE2b-256 4315901ce59588c9ad2d472552d8005016b70098a52b7a8da8237814743f39ae

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.0.9.dev202305101683651297-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.0.9.dev202305101683651297-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 36cfc6fcc637b44750721db073be3118b4596c973462ba03ad016fba82aa7c2f
MD5 cbb22a29a0235a3566bb5fbe804f5a23
BLAKE2b-256 419104e2f0cff7ad4d2c6aa80227b067f5fe2e18aa4cac37bb5923ada3321118

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.0.9.dev202305101683651297-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.0.9.dev202305101683651297-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 deae89321eb72622620a5c5b35ea498198f7eb7ff4252c6e579988a2c2795284
MD5 4a30af8202a036bd86b3a651d0dc21e5
BLAKE2b-256 a1d02347ab835e73c0e26e418c18fd4bcfa3bbda6bbf4aed4dfb98a43cd6b04d

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.0.9.dev202305101683651297-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.0.9.dev202305101683651297-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 9d270ef1af1e24412f0dc8b68a9d416704f334cf129371a9c013ee34471c30e9
MD5 60d9f232440201197adb09d94dfe3ec2
BLAKE2b-256 456f95cd5c6ebd98ea9c553837f7c112575d2de031ad4ab3d32e9195ded55df9

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.0.9.dev202305101683651297-cp310-cp310-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.0.9.dev202305101683651297-cp310-cp310-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 6c30255509b2a7699e47a531a7c5fe61fb1b243dbb69fbb404f386ac5035453f
MD5 a0455b7011495e5d0b41602c3f781333
BLAKE2b-256 d61dc61ccfef5f25b46841d3939861523f1b32b76329b26c515efeb67e093708

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.0.9.dev202305101683651297-cp310-cp310-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.0.9.dev202305101683651297-cp310-cp310-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 f6f5cd81ff9632b81ee9b4bd3403cd21e82d3f9d2267d92e6743286a124bbdea
MD5 bd569d284128bf4c0334306060ffb322
BLAKE2b-256 fd950cf73b5818099ef4678a735ec688ca81c8c0d8d75cfcf28d43f0f0f86a11

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.0.9.dev202305101683651297-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.0.9.dev202305101683651297-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 3b75e1ae0e1eb2709c3fbf604099cf815a4a5f8aaf64417579b085e60177d1c5
MD5 54097fde09ff86cf22cb76e89b0428ab
BLAKE2b-256 815aa93fda8307a65c007ef861b07cd78ea552d983202a082477c16692e09ac3

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.0.9.dev202305101683651297-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.0.9.dev202305101683651297-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 aa2d0393f6d7e7c0ea855e97370b4db8fa38fddaf94e2eb2f59a3266b103940a
MD5 df7216e7a59c2bdf1ecb773f1981ec16
BLAKE2b-256 ee7056cc9407f6695479e87bd25bf878b3a7981e3430d2372b9c75084a62bb81

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.0.9.dev202305101683651297-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.0.9.dev202305101683651297-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 3eadbbd098c0ab93dc272dcd03e334c678bba4289f37694de32effcfd20c2de9
MD5 a33f986fd34fa0b5c8cf520e386f3ce5
BLAKE2b-256 18c61dc222d5e9aa843780030cd24dea008071e61295a1735945c77c9ed8a78a

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.0.9.dev202305101683651297-cp39-cp39-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.0.9.dev202305101683651297-cp39-cp39-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 762446e947bb379a7b544a057aebc6bdb0e1353740b3b0772f049e721bb846a5
MD5 bcdbc2321bddceb16c3b6142a2437e52
BLAKE2b-256 c5d1671031ff05d2d9a158d7e8a83d65ebd80b276b837337f8f0b96530c858d2

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.0.9.dev202305101683651297-cp39-cp39-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.0.9.dev202305101683651297-cp39-cp39-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 4b61b5faee7c8dffe9c390096646adb10db5c3753ef9e367182d56ecfb0e2278
MD5 d02a5532ebfa68ec68c7d32db95f8092
BLAKE2b-256 27477991633513432293c30cd1d7641feb11967db13eee77f374167dbbda46ed

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.0.9.dev202305101683651297-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.0.9.dev202305101683651297-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 bf943c07f1fe16c1a4889a31df8d85e28302be4eae4b3ac50c3a5237a2cd2fa3
MD5 d6098e630b400d1fa042c73004515e86
BLAKE2b-256 38f84218da667988a4cbeb338024fdf270269de77c0c3f04c4ba09792a7aac0a

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.0.9.dev202305101683651297-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.0.9.dev202305101683651297-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 d600d1c6bda785d8d678e9e6ebee80b537496cb54421a77aeb7f68447ea5775e
MD5 6b64479dd8edc1f9c469f04aacbac592
BLAKE2b-256 72ce114d62b45957ce2404f39d262299fbea569c5dcb5fb3da53f6fc693a3b1a

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.0.9.dev202305101683651297-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.0.9.dev202305101683651297-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 0d6523aaedf3fb5fbf0e1c793c8128f14ea10f09d9fbbb76460c75cbbea5cafd
MD5 6ee7f3d05ec98750c312215a897ceee3
BLAKE2b-256 1c7e021432fe64df11f993778d794b1d80e8d6337fc1ed3149ed1df18762b0eb

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.0.9.dev202305101683651297-cp38-cp38-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.0.9.dev202305101683651297-cp38-cp38-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 a9cb9eaae21d935c65cd9d3416524ab74b55f3d52aac544b6f240481734ee200
MD5 7918072f98b19c0a4f8b8e4a9e7c0e78
BLAKE2b-256 22d685e8586013bcea9116faa23077a068b11c672ae5842b4c1aadd00e32dfad

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.0.9.dev202305101683651297-cp38-cp38-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.0.9.dev202305101683651297-cp38-cp38-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 14670fc70445430ddd74a88827a5766c6464d636c228daaf45cc92e911869699
MD5 466b26f8523fabcabf121493003597e1
BLAKE2b-256 fa9c070c9ff6141787d0f582f11bbd0a820ddae3a4d10a6c4d04e0a9e8e62715

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.0.9.dev202305101683651297-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.0.9.dev202305101683651297-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 71c892f67dcd82e0576b1bd61c5374d00fb26f71adca318a0759622b6865b895
MD5 1fb9433d4be89a0d512d31ace29e6223
BLAKE2b-256 7332f370e5fbbe1920d4a61e8364d674d3ccb647c931beab1a1cd75f7216a025

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.0.9.dev202305101683651297-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.0.9.dev202305101683651297-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 772447483272919936112c77b3b21509ea0ac77f963db5e13c40fcfabe97382b
MD5 059ac131afac8d7bbfc3fd3f9b924994
BLAKE2b-256 5519904247850eb25bc912434fcfa977d0bd27d697c83ad617fad874cd173ea3

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page