Skip to main content

Bayesian networks and other Probabilistic Graphical Models.

Project description

Description: pyAgrum is a scientific C++ and Python library dedicated to Bayesian Networks and other Probabilistic Graphical Models. It provides a high-level interface to the part of the C++ aGrUM library allowing to create, model, learn, use, calculate with and embed Bayesian Networks and other graphical models. Some specific (python and C++) codes are added in order to simplify and extend the aGrUM API. The module is mainly generated by the SWIG interface generator.

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

pyAgrum_nightly-1.8.0.9.dev202305131683703926-cp311-cp311-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.11 Windows x86-64

pyAgrum_nightly-1.8.0.9.dev202305131683703926-cp311-cp311-macosx_11_0_arm64.whl (3.8 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

pyAgrum_nightly-1.8.0.9.dev202305131683703926-cp311-cp311-macosx_10_9_x86_64.whl (4.3 MB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

pyAgrum_nightly-1.8.0.9.dev202305131683703926-cp310-cp310-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.10 Windows x86-64

pyAgrum_nightly-1.8.0.9.dev202305131683703926-cp310-cp310-macosx_11_0_arm64.whl (3.8 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

pyAgrum_nightly-1.8.0.9.dev202305131683703926-cp310-cp310-macosx_10_9_x86_64.whl (4.3 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

pyAgrum_nightly-1.8.0.9.dev202305131683703926-cp39-cp39-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.9 Windows x86-64

pyAgrum_nightly-1.8.0.9.dev202305131683703926-cp39-cp39-macosx_11_0_arm64.whl (3.8 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

pyAgrum_nightly-1.8.0.9.dev202305131683703926-cp39-cp39-macosx_10_9_x86_64.whl (4.3 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

pyAgrum_nightly-1.8.0.9.dev202305131683703926-cp38-cp38-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.8 Windows x86-64

pyAgrum_nightly-1.8.0.9.dev202305131683703926-cp38-cp38-macosx_11_0_arm64.whl (3.8 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

pyAgrum_nightly-1.8.0.9.dev202305131683703926-cp38-cp38-macosx_10_9_x86_64.whl (4.3 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

File details

Details for the file pyAgrum_nightly-1.8.0.9.dev202305131683703926-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.0.9.dev202305131683703926-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 51027c0dc100ce23e3eee78ac636fd4d6165c92f28b3574005d65a751f7e1086
MD5 daacc0bae20490ae9c02531d67d3af62
BLAKE2b-256 a1e355bca91dbbf49b513cc79bb0bb1cbb98bc81325e2dc6ed9483d6253adcd3

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.0.9.dev202305131683703926-cp311-cp311-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.0.9.dev202305131683703926-cp311-cp311-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 c06ec793f4dd5b4476ae3c552293d720351382cf01297c9518e656046aa46453
MD5 f8a3a20295c8119a57f7d7b245de9209
BLAKE2b-256 b522c492d1c18678d6f91a7a9ed84b31d4db93a507696bfbf2edf765c5734af2

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.0.9.dev202305131683703926-cp311-cp311-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.0.9.dev202305131683703926-cp311-cp311-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 1ddbdb48336fb89f0e575052c37bc9522d8d32d568234c778afdc85aab896fab
MD5 ea7192589ee3137c3e7100fbd091bc8b
BLAKE2b-256 056a3ecdb51c8e86fa9c6c7094fbe65c5d6a6948453552948dcbd2fbdf5eec7b

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.0.9.dev202305131683703926-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.0.9.dev202305131683703926-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 a74fc7ce1e6c803f542c66ce627aefb8d14ff17f72e14b08fbd7585f4ba7d7db
MD5 bd2e1d65c969b72aa0c1ae81e689d068
BLAKE2b-256 9fe3964fd5b5c1f4cb82032f7488124cf394718bccfa430a5a8f084abdd01dfb

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.0.9.dev202305131683703926-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.0.9.dev202305131683703926-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 0f004906a4b40104d6f5143d5a5799e8fc3e13b80a0753b9a83386428e2f884b
MD5 9d66b986f78a21816c781203f3447552
BLAKE2b-256 e381c6f96ffc73ecf301a8255d2a26584387b9204d916279d8bdd8117c2574fb

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.0.9.dev202305131683703926-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.0.9.dev202305131683703926-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 13d2492ff0e0703d3263f3027a752969e198cb7382f04a0ab8225ee4091e8751
MD5 3a1e723c9219082dedf30516d6660248
BLAKE2b-256 5809cce5295a6fbc2838e4c9edb6ad9d389d8a30d5fafb2372c01ad3cd1a4ef0

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.0.9.dev202305131683703926-cp310-cp310-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.0.9.dev202305131683703926-cp310-cp310-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 dedf8fd5f73d3d0288d4306e0889d2a736c401c7e218cb7921744bd7a24165f3
MD5 61ede3f0ac6e9c350f10d8075b8dbcac
BLAKE2b-256 1234adb8478119baf20003228da94ec446ad14ea54d1887c21c603e5d6f1eb08

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.0.9.dev202305131683703926-cp310-cp310-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.0.9.dev202305131683703926-cp310-cp310-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 78a7868a8618233c83bdbfe16c9dd635b99f7b0836d01ec8fd2a49599e4b0ec5
MD5 fb3bd56b7bc1a46007a4783bee32066a
BLAKE2b-256 581452a49485f110f434bbef1ae6a72c5bc74abcbac578ef5cbe3aa02afa0b2f

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.0.9.dev202305131683703926-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.0.9.dev202305131683703926-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 95b969f583dea627eac8d02e0b9a957902927e9bdb2688e2882745dba8d3c3c4
MD5 2b2a5970be7feb488c5f9a6b952d20ba
BLAKE2b-256 19ffbb21aa75a5688ef53cbf3706088ecec936cdef5b071192dbfe6a884d22b3

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.0.9.dev202305131683703926-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.0.9.dev202305131683703926-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 08a9cecabc7670c41914d8f8214043b6ce76b5f4158dcc32d983a0c141617e71
MD5 38e210a7ce63d3cefc18e54088b25cac
BLAKE2b-256 fa95abb945e7d7e9710052a753d208d54190f97e20ba075b60d380bc53ca6bc6

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.0.9.dev202305131683703926-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.0.9.dev202305131683703926-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 50961ef860351cff7ccbbdb459a71dc46b7c608b2b45ab6f288fc91836bbc054
MD5 0e5cb3a4ea9ea3d54681cf9e368df690
BLAKE2b-256 b890ab106f614ea09a8a80b70c4ce2cb4b3872834d6f73b2b1d4482143a4cf38

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.0.9.dev202305131683703926-cp39-cp39-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.0.9.dev202305131683703926-cp39-cp39-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 510f4fd6d8c7078ebf49ae874900b0d41fecba8743d0b7140850106d1169f5f4
MD5 ba0d9bd243d6b392f8a5a92392c47446
BLAKE2b-256 bdf26ab5cac2572da3226e036e17c5b770c4319e9637e17beb43f8471f0289af

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.0.9.dev202305131683703926-cp39-cp39-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.0.9.dev202305131683703926-cp39-cp39-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 5253ab0a8aa2aaec1eb0a4246667bfdc8d222db48eca1b894e5e005d1c1f8264
MD5 965a42b50c459ba50b0819ee036af6c7
BLAKE2b-256 3030428f13d3b0c7eb5ed652b1ab2e623bf0c7d61e72ef9fc4a1a7b89faeab84

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.0.9.dev202305131683703926-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.0.9.dev202305131683703926-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 ea2feba2b5d4dd34e0d1574d388765c98ad37a14b6464e4ab4b9c3e129493e41
MD5 2145fcd373efb58dc74550042bf2065a
BLAKE2b-256 e5f2ae48b4f3468e46508c6efbf85e90ae2adbb76bd6bad3799d3d30f0ff9cce

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.0.9.dev202305131683703926-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.0.9.dev202305131683703926-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 0d78023ae29b3cb7c6a497758030ddf5125320e2acf8ef75cac9820c6d003ead
MD5 c3ecc0cbd27a7fcf5c1e2a14d1d90c60
BLAKE2b-256 e298553abd40b84dd7bbd29b5f9e2a9783ea4cb77403803299aa83159264311c

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.0.9.dev202305131683703926-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.0.9.dev202305131683703926-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 401d43c42d17a51790dd6b7393df8a226a836b57906a3805cb0168c9f623cd0d
MD5 8b80e58ecd9852212de68d234da3814b
BLAKE2b-256 2d6591fd60f6c6b0337c18565d8de9db1d90769142f57442e78cf662bf91f977

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.0.9.dev202305131683703926-cp38-cp38-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.0.9.dev202305131683703926-cp38-cp38-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 22e35587b6112432a328646aaa7dfd688d14d54ecbd056ffcef050b4ead6b6bf
MD5 23072974ea39b044cbe16045b18cab61
BLAKE2b-256 10c666644f3771645f6692a7fef7ef405f2cfbbf2fa421d4e3131a300d172358

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.0.9.dev202305131683703926-cp38-cp38-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.0.9.dev202305131683703926-cp38-cp38-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 2126abb2b83d3f90bbffefa7e6403c665f0d572cddeb904cc5d4b0dc4ab11362
MD5 788536b004a788bcd7b55583617eebc3
BLAKE2b-256 be3b507d52f5733dd89c3c38b7902f683a60e8d91c8bbe45920d735c5ef7f824

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.0.9.dev202305131683703926-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.0.9.dev202305131683703926-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 16dbfa723df4cb8153af0336344d4a0121dae49d16ecef9b633ad96a694a7721
MD5 0505ec4339d8ec4814471fafbf7fc862
BLAKE2b-256 9715cee31230d40f23acf17bdf605575e8761218b14041bce04db9113305fa34

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.0.9.dev202305131683703926-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.0.9.dev202305131683703926-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 c371d736d8d9d50e9a75493f9e9a27c5b0f0b82a4f792a0f6e59016acfb4f26a
MD5 82f8b5838e60570b896bce9152a17682
BLAKE2b-256 6a4617028aa81b81df29057245d29108e50e744cb12883594a8da496b77ee26d

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page