Skip to main content

Bayesian networks and other Probabilistic Graphical Models.

Project description

Description: pyAgrum is a scientific C++ and Python library dedicated to Bayesian Networks and other Probabilistic Graphical Models. It provides a high-level interface to the part of the C++ aGrUM library allowing to create, model, learn, use, calculate with and embed Bayesian Networks and other graphical models. Some specific (python and C++) codes are added in order to simplify and extend the aGrUM API. The module is mainly generated by the SWIG interface generator.

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

pyAgrum_nightly-1.8.0.9.dev202305181684304798-cp311-cp311-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.11 Windows x86-64

pyAgrum_nightly-1.8.0.9.dev202305181684304798-cp311-cp311-macosx_11_0_arm64.whl (3.8 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

pyAgrum_nightly-1.8.0.9.dev202305181684304798-cp311-cp311-macosx_10_9_x86_64.whl (4.3 MB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

pyAgrum_nightly-1.8.0.9.dev202305181684304798-cp310-cp310-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.10 Windows x86-64

pyAgrum_nightly-1.8.0.9.dev202305181684304798-cp310-cp310-macosx_11_0_arm64.whl (3.8 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

pyAgrum_nightly-1.8.0.9.dev202305181684304798-cp310-cp310-macosx_10_9_x86_64.whl (4.3 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

pyAgrum_nightly-1.8.0.9.dev202305181684304798-cp39-cp39-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.9 Windows x86-64

pyAgrum_nightly-1.8.0.9.dev202305181684304798-cp39-cp39-macosx_11_0_arm64.whl (3.8 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

pyAgrum_nightly-1.8.0.9.dev202305181684304798-cp39-cp39-macosx_10_9_x86_64.whl (4.3 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

pyAgrum_nightly-1.8.0.9.dev202305181684304798-cp38-cp38-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.8 Windows x86-64

pyAgrum_nightly-1.8.0.9.dev202305181684304798-cp38-cp38-macosx_11_0_arm64.whl (3.8 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

pyAgrum_nightly-1.8.0.9.dev202305181684304798-cp38-cp38-macosx_10_9_x86_64.whl (4.3 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

File details

Details for the file pyAgrum_nightly-1.8.0.9.dev202305181684304798-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.0.9.dev202305181684304798-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 7b4a6043734fdac42299d8a1cdaf75d77b7c0160684f0bdb1885093ca61f9ff4
MD5 b8cb54997338d809c250c6a25699c181
BLAKE2b-256 1d4862f77721c1f5ed44ea24dc58362d700ba94c2a20cc69be70b4817edac0e7

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.0.9.dev202305181684304798-cp311-cp311-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.0.9.dev202305181684304798-cp311-cp311-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 0fb458882b395539cddc1a0c826fdf0c546e6590e29fbb0138fadb402bd74088
MD5 6b4260203149640eda05c1d14a919715
BLAKE2b-256 bd728fc30689760784e0841f0cac9bb9dd3836b0d35d4bffce07d71ed9d4cca4

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.0.9.dev202305181684304798-cp311-cp311-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.0.9.dev202305181684304798-cp311-cp311-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 c10a8d865ab73119fa76e27298a7c72f7ddfc95d57a1eb3d27e3780709895cff
MD5 a43ca0b9950e57ce61b9224005b17f3e
BLAKE2b-256 92dcdf6b3703f615480c18e1e1bc655726aed9772a4e0e43901f4d3888b9980c

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.0.9.dev202305181684304798-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.0.9.dev202305181684304798-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 3c00d0885c820e2ce116cbfa582c74686aea1c1c30c869541228e4bb035b7899
MD5 816abff530ee423583b5d98de5a1e144
BLAKE2b-256 814762da7414feac31cc88ccfae07730b0e90f68dd75ba659d1a487f23f5f8cb

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.0.9.dev202305181684304798-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.0.9.dev202305181684304798-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 8fe387a83355b702ff4add133fa0c571693c9d5631f7bf5588d0d18b63876a98
MD5 580f573f4878ca3d75427884891f4ba1
BLAKE2b-256 aee3871f3fd523e837e273751988ca7813beb79ae29f3f5aa0942bf6ad49c7b8

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.0.9.dev202305181684304798-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.0.9.dev202305181684304798-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 4475fec1acd49a80120561a0c1e7a834499911a1e44cb8eef19cbe1e058fe05a
MD5 b8aaa6d76ac97c0e894ff53544d1c1a0
BLAKE2b-256 9cb435adfbbef1cbaa97a676528d6c3cbb7d22dba0b41aba5039edd4f47ba078

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.0.9.dev202305181684304798-cp310-cp310-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.0.9.dev202305181684304798-cp310-cp310-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 eea832098da6a3d7ebc922bf19d07cb9e6115a6d8b4246ce748c5902ff404a6a
MD5 b542c260624d5a1a6dd26e924041114d
BLAKE2b-256 ac0542db7661d2f6271a50f276d9c47871f7ac73367d6feddb8ebf3cc0a8b2e9

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.0.9.dev202305181684304798-cp310-cp310-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.0.9.dev202305181684304798-cp310-cp310-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 7791bd36aceef024fc330bb98b1c0a30f4ced5f7b70927d45007bbc1c331d5ee
MD5 83b0bb042ff3e0cfab0dd523e964a7b7
BLAKE2b-256 8f6aadf39b104a35453ab189f2c5338b6f5fa2bbf0a2bcd7246192d3f22ac847

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.0.9.dev202305181684304798-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.0.9.dev202305181684304798-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 04ac8455e82b8520b2ffb1a9109ea72e1189c5dfc61dbe7f18f10c1f0a1764d3
MD5 8997dcb656a076db35e44c4823938116
BLAKE2b-256 d925c5f05c737e306db0c958807122e80440e46bbf00d967d974445acf6074b8

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.0.9.dev202305181684304798-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.0.9.dev202305181684304798-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 3202a1dde522125852f1c089702371fe0900d2ba03e06831ba9c1f225770b08e
MD5 bd00a7964020f52263b35dee7bf50fd9
BLAKE2b-256 43b573ca119447736e8f2b0f05c76e3024ca15c7308b86f6599519b58ffc76c3

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.0.9.dev202305181684304798-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.0.9.dev202305181684304798-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 d3eb060c127807e86ece057fc9787338fc8206dc2866570ac57263dba4af1d8c
MD5 a99401b23330cf2226c3e94c6d7cacb7
BLAKE2b-256 6fe834ce1a51ace3c6f757277ef78144c5b5acdbbb936f278805af1b2ccae746

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.0.9.dev202305181684304798-cp39-cp39-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.0.9.dev202305181684304798-cp39-cp39-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 c0aee4ca47b77bf78d1f892970a91850139a218ddc8606e7de29c932b4fcb26d
MD5 c730e5cff866b98e2cce819d6bbb1f8e
BLAKE2b-256 6f33fed8ec408437e46746f4f412926dc3516183282055eb70778a52fcb17707

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.0.9.dev202305181684304798-cp39-cp39-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.0.9.dev202305181684304798-cp39-cp39-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 d45c466b301fdb329dee3ee5890be101ca7de0309dfebe823ee95ab69535daab
MD5 139d5d2f35191b3d8ec744662fa4d10b
BLAKE2b-256 6c931a653c609521c28550598d04f5c0d232bf70969bc2c0f7db2217f9a6d524

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.0.9.dev202305181684304798-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.0.9.dev202305181684304798-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 4e02671aea8c10384efd8df7a8e99c430f2b433a7589df7ce06797ab78c5e246
MD5 bdbc6f0c2fa6e517a0df75c0c29a6c00
BLAKE2b-256 080d82f1ac3998a909e3c091aa8798568288e1553e1bfcfe4dd2b71773e746b1

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.0.9.dev202305181684304798-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.0.9.dev202305181684304798-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 0d02358d7f8dfc34e010b911985576cc05f5ed7e2bdb549a546e2bf57fa4ac7d
MD5 be3372aea144e4884a4480dd665a6bb2
BLAKE2b-256 668cc078b512d3b5a57ff55ed4f182840aa186299864e037fc98a04d25a78596

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.0.9.dev202305181684304798-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.0.9.dev202305181684304798-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 9b5b1334a45095870b0f695b5a393e269bd26bc951beb690a4c0c59571a48edd
MD5 d816ec2041b5ff0283c2c39cf93cb397
BLAKE2b-256 4963e514968630ecf3aed8b287fb9b8a9aa529ce58198553a62e90027804b334

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.0.9.dev202305181684304798-cp38-cp38-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.0.9.dev202305181684304798-cp38-cp38-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 1ea4761821359e9aad68567b774a76094407b0c222619a65122b2f29821318b0
MD5 924f0a33392d47a002c51c876f0fa4e4
BLAKE2b-256 cca65b3bc96c65a63768a5972447741ff6206b9d4bef34100c9ae3429a9bb4b4

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.0.9.dev202305181684304798-cp38-cp38-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.0.9.dev202305181684304798-cp38-cp38-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 b40d5b91cc8805e2097a2335ebc03f0754fd102a04233fed96d3e0532a79f5ba
MD5 dc8b55335013d342ecf9772438266549
BLAKE2b-256 e7efbefa0e33fb992078da68847b7dccf550cce62553307dc7134e64f60fc13c

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.0.9.dev202305181684304798-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.0.9.dev202305181684304798-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 db1647d9fb2349ff1666db264c97df44caf075d451193ffe3ec1ca57278e2c7a
MD5 14844da3e97413f9a3e11560b0ec57d9
BLAKE2b-256 8adde101c9000bd873372053de1ef8f258a1cf6c061b724551cc73e4330f2c76

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.0.9.dev202305181684304798-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.0.9.dev202305181684304798-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 78ef8858829a8d48ca9aedecf96b2f7074e2a7bd7cdae91ce9333e16ff011599
MD5 347f236acf359acfdadd218ea202854b
BLAKE2b-256 e218f6dfac9b470d5772b4eaadd45523bd2d0796f8697d6d6cfb2d2c7c99a2c3

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page