Skip to main content

Bayesian networks and other Probabilistic Graphical Models.

Project description

Description: pyAgrum is a scientific C++ and Python library dedicated to Bayesian Networks and other Probabilistic Graphical Models. It provides a high-level interface to the part of the C++ aGrUM library allowing to create, model, learn, use, calculate with and embed Bayesian Networks and other graphical models. Some specific (python and C++) codes are added in order to simplify and extend the aGrUM API. The module is mainly generated by the SWIG interface generator.

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

pyAgrum_nightly-1.8.0.9.dev202305231684706696-cp311-cp311-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.11 Windows x86-64

pyAgrum_nightly-1.8.0.9.dev202305231684706696-cp311-cp311-macosx_11_0_arm64.whl (3.8 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

pyAgrum_nightly-1.8.0.9.dev202305231684706696-cp311-cp311-macosx_10_9_x86_64.whl (4.3 MB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

pyAgrum_nightly-1.8.0.9.dev202305231684706696-cp310-cp310-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.10 Windows x86-64

pyAgrum_nightly-1.8.0.9.dev202305231684706696-cp310-cp310-macosx_11_0_arm64.whl (3.8 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

pyAgrum_nightly-1.8.0.9.dev202305231684706696-cp310-cp310-macosx_10_9_x86_64.whl (4.3 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

pyAgrum_nightly-1.8.0.9.dev202305231684706696-cp39-cp39-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.9 Windows x86-64

pyAgrum_nightly-1.8.0.9.dev202305231684706696-cp39-cp39-macosx_11_0_arm64.whl (3.8 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

pyAgrum_nightly-1.8.0.9.dev202305231684706696-cp39-cp39-macosx_10_9_x86_64.whl (4.3 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

pyAgrum_nightly-1.8.0.9.dev202305231684706696-cp38-cp38-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.8 Windows x86-64

pyAgrum_nightly-1.8.0.9.dev202305231684706696-cp38-cp38-macosx_11_0_arm64.whl (3.8 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

pyAgrum_nightly-1.8.0.9.dev202305231684706696-cp38-cp38-macosx_10_9_x86_64.whl (4.3 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

File details

Details for the file pyAgrum_nightly-1.8.0.9.dev202305231684706696-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.0.9.dev202305231684706696-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 d0f8ba28651d9356f48993e6e736fee9e5491cfce1c84362e2c1a89c80973898
MD5 3611e8d14e9ee51fd26ea70af9d1f707
BLAKE2b-256 24524e0e87912c4ee8720547b7f32a6f198aaf4dc329f015ec973732e0e72ba8

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.0.9.dev202305231684706696-cp311-cp311-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.0.9.dev202305231684706696-cp311-cp311-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 2042cde0c05521a54135d115d02e35805c4f491e65aca6c2645206e75e9d9d58
MD5 7d38122452968c05ef9948297c50110a
BLAKE2b-256 bb2878c4ed246408451f43030ddd24f7e454e4a80e8433ccb0a423c7069f95f5

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.0.9.dev202305231684706696-cp311-cp311-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.0.9.dev202305231684706696-cp311-cp311-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 e2b80fb8b2add278a42b8d6041cd03ffc46709a28645773d605104419964c9a7
MD5 f9a83c5e56f44a4e5b32db6d94e965f2
BLAKE2b-256 cbd630394ef191c3172c1d05379e472e15b96dbfe1fed4e00d7651d46767a75c

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.0.9.dev202305231684706696-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.0.9.dev202305231684706696-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 41aa435e7a7a5b715ffea6ed62667ae3a8e2f52808a75c8db6d90f6c8625a48b
MD5 eb8fccc6d888fd939f2eb37478cc796d
BLAKE2b-256 80728313629c1e411f1007c7f8e7f6775c9356e0aa916b46fa873fe1c9fdce38

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.0.9.dev202305231684706696-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.0.9.dev202305231684706696-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 71369f8664f998794ed2fb4bc36e44c16f7ce59876046da4c7fb1ab6bda8c060
MD5 cb39ce13dba4760115371c08455e96f4
BLAKE2b-256 cac3c1cccedb0b8d020419d3f09124c0d21442ff98b25b83383d534689908409

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.0.9.dev202305231684706696-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.0.9.dev202305231684706696-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 5965e70d131d778f86fff6fc2688895052fb314e73fbd45d7dbf91c1e25994c4
MD5 f785c15c23b2fc72db1a34164415bc16
BLAKE2b-256 57e86f2c69d362c5ea9b751abc4633911aa724434996724fc00b2ff2e83146f3

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.0.9.dev202305231684706696-cp310-cp310-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.0.9.dev202305231684706696-cp310-cp310-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 ecb7a9bf2333034a5aa81b70ba5f0d5b918df6c788ef544c48fa92029c41f190
MD5 84323ec5d88f2e88d72e8f4ef387d711
BLAKE2b-256 c6aad08c80f7ca0409416269344ede2d291bfb22c0bff421bc68ce51a3b47425

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.0.9.dev202305231684706696-cp310-cp310-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.0.9.dev202305231684706696-cp310-cp310-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 09edc4b01355e2bc3527296732d28afdf62aa6622ceddaadb9e81ada029d5d76
MD5 d828aaaf7223f63c17b530e2494b91b1
BLAKE2b-256 bb774c5c3723339998bc54564ab5fc0045e24c0349619cfaf7a18a7eb153f225

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.0.9.dev202305231684706696-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.0.9.dev202305231684706696-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 32644f78da9a31ea9a8f21de48d1a4a4ee4f788a6348e5a606884ce91b3dac69
MD5 2ca83c021e59a056bf1c564581fb040b
BLAKE2b-256 7c44ceb4a12fdcd5e2ab303b237531062a0f93e3aee3fe290ccda7fda7632c43

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.0.9.dev202305231684706696-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.0.9.dev202305231684706696-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 17435c1033caf671bf8beeb10de27bb41b364b880308c60929afe399061c1e01
MD5 10fbdf2810ceec944e775b98f4176a2e
BLAKE2b-256 a8132ffb6d45b809bb3ed8d877b6d4a8d175de460e228302ff8deadd798215e7

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.0.9.dev202305231684706696-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.0.9.dev202305231684706696-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 6d1cbdee2723eeda2914a7b60cf8e69a29481fd35953494c58474206babb7886
MD5 5821a4f2e0c0c245b56d6e9c026d0e7d
BLAKE2b-256 b32d42224444687e93bc618fb42c0f168e88b7864e071687286559eea5cce68e

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.0.9.dev202305231684706696-cp39-cp39-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.0.9.dev202305231684706696-cp39-cp39-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 4c907e030e85e36705a592a543ec6d87eb6bdbfbcc337ba7ab4e98665e3ec0db
MD5 28ddea99d53f2a4e5ed28483030fd648
BLAKE2b-256 0405ae528f28632c60e3254e9ceeaecc9df4f7f9b392f69751c040362fc540b7

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.0.9.dev202305231684706696-cp39-cp39-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.0.9.dev202305231684706696-cp39-cp39-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 f6a5c9d5059bad000a52a8c0d8a174790abcf5bff7a6ead483e18dcfe73087f2
MD5 140d2cad9ee4469c4c95ce8118b30df6
BLAKE2b-256 03e58ed768adc653855eeae23e89dc07a9eb409aeab2aad47ee3ce7df6a8a2f5

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.0.9.dev202305231684706696-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.0.9.dev202305231684706696-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 c1ebc7df01be8c776927f3221de19be3719bf6c525686645a7e3a21c548ec7f1
MD5 3adda4f17a8f53b1f71a6a7741c25c31
BLAKE2b-256 59f4c44a008e3d6ecc896e8793de11162d8b2b84b4304ba49b1e63f0af974d07

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.0.9.dev202305231684706696-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.0.9.dev202305231684706696-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 4dd2332351bfc33dc04f84aa4a124c5cd288e31ae67317e71cfbc384607d185d
MD5 6c3a7ee85baff611f5eaf00897f51bd5
BLAKE2b-256 04c18de4df714fe731c3d69acd24a16e362f50cf06432d0b01b873d1f0315206

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.0.9.dev202305231684706696-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.0.9.dev202305231684706696-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 e6ca887e27b2ab832898f0a0b7110c2cfbf7bcf6ad78f424aaec4a16ceb4cd84
MD5 463c1e224911d924ee6d1c41c2be3aab
BLAKE2b-256 34b10e89e4d2fff3bd9d9ed25bdce85c484f3df84b991eae20f4b6fc0b0ca96e

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.0.9.dev202305231684706696-cp38-cp38-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.0.9.dev202305231684706696-cp38-cp38-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 d29391958c97b7a8271101c8f839e057aabe7ceb035233523e92291d095bc7a0
MD5 971f935f883ca5f96a411885b4b134a4
BLAKE2b-256 1647b266301f6d223371efbf14b92675699ba6fe27c75ac5829a4ff68028d2c6

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.0.9.dev202305231684706696-cp38-cp38-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.0.9.dev202305231684706696-cp38-cp38-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 e23b016eb4f6f1f3d9511aaa678136d07fab28fe4219c6575369821189e3e067
MD5 40edc81a35df488ba8c3521a1f038fcf
BLAKE2b-256 2c28818c2e46f5d2953e871c0ae4c7341643f17a95eefd26eb1ebb8bf8849adc

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.0.9.dev202305231684706696-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.0.9.dev202305231684706696-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 0bb871e3c161e88f7889a50d52c9af62df31d754756859895604e60e895b472e
MD5 f5438b921cdf09fe457c7287ba1ea6c3
BLAKE2b-256 b09e2b68068f3e609158256d67be698fb00976cc8fa6181e3f739fc469c06613

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.0.9.dev202305231684706696-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.0.9.dev202305231684706696-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 a21e5ebbf354eee6c631d8049d78705721b3858b5097d123fa452b102941b995
MD5 8f22a6dabd4107368c7c33064f5850cc
BLAKE2b-256 07ce7e6766f50824792c27e92a0906695344a360255d3bc506975ecc6acc3602

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page