Skip to main content

Bayesian networks and other Probabilistic Graphical Models.

Project description

Description: pyAgrum is a scientific C++ and Python library dedicated to Bayesian Networks and other Probabilistic Graphical Models. It provides a high-level interface to the part of the C++ aGrUM library allowing to create, model, learn, use, calculate with and embed Bayesian Networks and other graphical models. Some specific (python and C++) codes are added in order to simplify and extend the aGrUM API. The module is mainly generated by the SWIG interface generator.

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

pyAgrum_nightly-1.8.0.9.dev202305241684867312-cp311-cp311-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.11 Windows x86-64

pyAgrum_nightly-1.8.0.9.dev202305241684867312-cp311-cp311-macosx_11_0_arm64.whl (3.8 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

pyAgrum_nightly-1.8.0.9.dev202305241684867312-cp311-cp311-macosx_10_9_x86_64.whl (4.3 MB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

pyAgrum_nightly-1.8.0.9.dev202305241684867312-cp310-cp310-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.10 Windows x86-64

pyAgrum_nightly-1.8.0.9.dev202305241684867312-cp310-cp310-macosx_11_0_arm64.whl (3.8 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

pyAgrum_nightly-1.8.0.9.dev202305241684867312-cp310-cp310-macosx_10_9_x86_64.whl (4.3 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

pyAgrum_nightly-1.8.0.9.dev202305241684867312-cp39-cp39-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.9 Windows x86-64

pyAgrum_nightly-1.8.0.9.dev202305241684867312-cp39-cp39-macosx_11_0_arm64.whl (3.8 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

pyAgrum_nightly-1.8.0.9.dev202305241684867312-cp39-cp39-macosx_10_9_x86_64.whl (4.3 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

pyAgrum_nightly-1.8.0.9.dev202305241684867312-cp38-cp38-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.8 Windows x86-64

pyAgrum_nightly-1.8.0.9.dev202305241684867312-cp38-cp38-macosx_11_0_arm64.whl (3.8 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

pyAgrum_nightly-1.8.0.9.dev202305241684867312-cp38-cp38-macosx_10_9_x86_64.whl (4.3 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

File details

Details for the file pyAgrum_nightly-1.8.0.9.dev202305241684867312-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.0.9.dev202305241684867312-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 f83d7b83b4d3f85fe49d32ea8cc246ee5e6e8fb5f3e447a723d8d536c6170f00
MD5 50f45605ab6d005fb9c6caeeeeaacadb
BLAKE2b-256 3a22b14e8c258f702e65933d6070400a561691656d9298168b92814bfda67fab

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.0.9.dev202305241684867312-cp311-cp311-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.0.9.dev202305241684867312-cp311-cp311-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 fb36c7ce7839fc8ab4e642ce994902d27dc0498f6114e9aeacf9f39d423e9b92
MD5 d2319dafb5b56e28a42e5aab135ed0cb
BLAKE2b-256 2d36eb6d0638e294cc2001994b6bdf606c60f02d4d9661d251c0bf9899fc22cb

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.0.9.dev202305241684867312-cp311-cp311-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.0.9.dev202305241684867312-cp311-cp311-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 adcfbe6abdf9b95e88003a7c802f3f8dc01df4938e1d94ae44255e52df53330d
MD5 fc17d7c7717c8bc6e6ba06a76fcb64dd
BLAKE2b-256 447279537fc96c479c605c380abd730c42b600060da9d42cf3df4cfef0b7f759

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.0.9.dev202305241684867312-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.0.9.dev202305241684867312-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 eda081c248618c7929bcc3b7df88ad333f930d73c652ea1fc72b217332b6fa6d
MD5 a8cc98307fd1b6412040469a510c4bf0
BLAKE2b-256 33e03054f040b2c4813cf3cc73285f21e8b554e8027f1e178004724c43ac0273

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.0.9.dev202305241684867312-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.0.9.dev202305241684867312-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 9c35e652d59512afd4b537dd0cc1e950edd06d4b7e9267bf84b3d6668d98764f
MD5 c284a781fbc6398e4b5de2ee0c909131
BLAKE2b-256 1a60c8a0befe229335a1c7519465ad983b00cf6c336c4f1f3ffe3d2859e0127e

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.0.9.dev202305241684867312-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.0.9.dev202305241684867312-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 b1a388d20eae2623225dc81f396af0c0a09b249f4c9b45832848a42f35141e10
MD5 885fe311663f58a3b812538590a3b1dc
BLAKE2b-256 2465d62c32befc66e84deaae196eb7dd5aea5ae17a47c04084686e480fd45e6e

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.0.9.dev202305241684867312-cp310-cp310-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.0.9.dev202305241684867312-cp310-cp310-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 46caaedafb7860090d57d36e2868d5cef49af4ce7550c74d961b85d0af5c1f47
MD5 310bdd1afb6f0005039a78c6b73ce6a4
BLAKE2b-256 c4a739d186f57822dadd8722c105e3449a79584e7b947bb993491c45dafcc5fc

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.0.9.dev202305241684867312-cp310-cp310-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.0.9.dev202305241684867312-cp310-cp310-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 37cca7033501746c938f98d910fd4b0bf482ed5f3bae30fba470b3ce0c7166ac
MD5 6b32f3f8179f5bcac9a064bac5700f47
BLAKE2b-256 f59b47d4874e9dbabccf19ea6dcca35f14c0a1473a8e4559e1cf1474c7ee5af4

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.0.9.dev202305241684867312-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.0.9.dev202305241684867312-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 91534f140a54172c7a0802e8b5d40a433fd666b6b6fe61793135abc6dae1ef38
MD5 3fa1fc6319c05ce02a74fece669f5ed4
BLAKE2b-256 491ba990b6a659201d2615ebbae76d87629e98da59c40528169a315cd6aa4185

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.0.9.dev202305241684867312-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.0.9.dev202305241684867312-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 76c765e1c0acbee08da8af9be532f6b93d8e9e8b983639df1a31e2bb8c24a9bd
MD5 c4ae0607a946357e0a43710696f1f30c
BLAKE2b-256 385308aca6af5ecfabfd71b138a1f511cb13f16f8aa3463c7ffd6c03db440c67

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.0.9.dev202305241684867312-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.0.9.dev202305241684867312-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 6b842e24347fa9fb694ad8bf87096abe478d6a4fb124a6172403f2f5efb2e9c3
MD5 bdb12405a46111450004e8f8df8f836b
BLAKE2b-256 0adbe73a618b305278fe77c53ffa0e4c63037458e454a624f01c90a8d2aaeda7

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.0.9.dev202305241684867312-cp39-cp39-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.0.9.dev202305241684867312-cp39-cp39-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 4d6fe55962649a06b913e77e15a58898703df8063f56f940faeb53f189a966f7
MD5 3c318713d2aef26158f79edf981c872a
BLAKE2b-256 eeb36321e3581d86cc3ad320c2d864b28067e81ec8b3b8cc89fa0fe5e0115d33

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.0.9.dev202305241684867312-cp39-cp39-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.0.9.dev202305241684867312-cp39-cp39-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 1d5b0a55ddf429f64a1d186965d023ad66b2b737a68a0d65dbc2d283e8cee901
MD5 d3da4230fe8903078ae93212ab180694
BLAKE2b-256 aa65a9413e219fc9d08609e9fcb8c9b8b067ab22de4527f16c54f6b7b43de0aa

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.0.9.dev202305241684867312-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.0.9.dev202305241684867312-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 e88a3c673ef430b28ec59cb9215c05ff6b1b687745408ea231577ef1b7109d67
MD5 4fb0cbd927ccbddc2c94de251e1a276a
BLAKE2b-256 bcc6552c225f338147093bc41642e49fec8d067472c7b7b4123857557e11bc91

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.0.9.dev202305241684867312-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.0.9.dev202305241684867312-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 0dd8d9d6cfaa61134e50d73d54a0fe81a4d2e829c7ad7fe382c9aee650b42a55
MD5 83032932d197948165dc3d70a0773f22
BLAKE2b-256 5151ecb4c0651f58b22aca93ff0dec67053428056291566f59160f51d0b2eae0

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.0.9.dev202305241684867312-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.0.9.dev202305241684867312-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 8e6afe547a69909aa11fbd58e65f9e69d9e2593bcfd4e30a12dfadc25ab5f4b0
MD5 ae39e6111c6defc2524c993aa052b9e6
BLAKE2b-256 7107e1766c13ab754d49c80dd854f0a4db547f1ef125d985dc75dfe4b25e0244

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.0.9.dev202305241684867312-cp38-cp38-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.0.9.dev202305241684867312-cp38-cp38-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 e8434719b96cc65cc8ecc5bc93e3c06e4fd4143e27d619c71abbec7c9d4ef81f
MD5 2b707707c6c7f56f7833ec2fd8cdbeba
BLAKE2b-256 181be506011e41fcf757185a3dabfe02b071660140b08ecfad7d8b4146c7cc42

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.0.9.dev202305241684867312-cp38-cp38-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.0.9.dev202305241684867312-cp38-cp38-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 4d5b9ac72ae81fd4501adb09354afcc6369657cd3c2418ed1a95f77c1ade8bcc
MD5 944ba86e629b0ee7e4813a92c29c13f6
BLAKE2b-256 21d3b4db285a78f6a040680dead8c5ab838cc41bf4def29e6a5cb74ec0e790a8

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.0.9.dev202305241684867312-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.0.9.dev202305241684867312-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 d5fb85f30d81f76bec71e5e22fce6c387983e0f32db4b1d1598b94af3be83ed7
MD5 acf8d59c77818c0932deb072b435a4ac
BLAKE2b-256 b508522701cf746cc45aa57a9ab0e8ab989391eece2e0ee2d0fcb7c0fe167f62

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.0.9.dev202305241684867312-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.0.9.dev202305241684867312-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 75435e69825dfcd799c647fb0161551a046e8b210bab35bc7b80add672fd0a11
MD5 fe1e7ffe91bde196673eebf220e7d9ab
BLAKE2b-256 ca53fefe7fa34dfadc70d4bf189770399a096d83f08852f9a8ecc3e0ce75de37

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page