Skip to main content

Bayesian networks and other Probabilistic Graphical Models.

Project description

Description: pyAgrum is a scientific C++ and Python library dedicated to Bayesian Networks and other Probabilistic Graphical Models. It provides a high-level interface to the part of the C++ aGrUM library allowing to create, model, learn, use, calculate with and embed Bayesian Networks and other graphical models. Some specific (python and C++) codes are added in order to simplify and extend the aGrUM API. The module is mainly generated by the SWIG interface generator.

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

pyAgrum_nightly-1.8.1.9.dev202305271685116202-cp311-cp311-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.11 Windows x86-64

pyAgrum_nightly-1.8.1.9.dev202305271685116202-cp311-cp311-macosx_11_0_arm64.whl (3.8 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

pyAgrum_nightly-1.8.1.9.dev202305271685116202-cp311-cp311-macosx_10_9_x86_64.whl (4.3 MB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

pyAgrum_nightly-1.8.1.9.dev202305271685116202-cp310-cp310-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.10 Windows x86-64

pyAgrum_nightly-1.8.1.9.dev202305271685116202-cp310-cp310-macosx_11_0_arm64.whl (3.8 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

pyAgrum_nightly-1.8.1.9.dev202305271685116202-cp310-cp310-macosx_10_9_x86_64.whl (4.3 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

pyAgrum_nightly-1.8.1.9.dev202305271685116202-cp39-cp39-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.9 Windows x86-64

pyAgrum_nightly-1.8.1.9.dev202305271685116202-cp39-cp39-macosx_11_0_arm64.whl (3.8 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

pyAgrum_nightly-1.8.1.9.dev202305271685116202-cp39-cp39-macosx_10_9_x86_64.whl (4.3 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

pyAgrum_nightly-1.8.1.9.dev202305271685116202-cp38-cp38-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.8 Windows x86-64

pyAgrum_nightly-1.8.1.9.dev202305271685116202-cp38-cp38-macosx_11_0_arm64.whl (3.8 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

pyAgrum_nightly-1.8.1.9.dev202305271685116202-cp38-cp38-macosx_10_9_x86_64.whl (4.3 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

File details

Details for the file pyAgrum_nightly-1.8.1.9.dev202305271685116202-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.1.9.dev202305271685116202-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 7de2dab7511e08e7246065ed9e23665b45bb39bb81da260a16f41db8e566c736
MD5 da5c346134429cdc445e04d7cbac27a0
BLAKE2b-256 46741abbd6633b6714951d99082cca9434f972cfceb1184ceed9ecddbe7bd357

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.1.9.dev202305271685116202-cp311-cp311-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.1.9.dev202305271685116202-cp311-cp311-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 5a9817f46fb81dd66fd3a7a1a6076400fa8fa16797427aba155589c36be969ef
MD5 d449e17650c56649ca4127b12d4c7fa8
BLAKE2b-256 5d0fb18a2762a2e342ff21d358422713182be0cd6110a0c98fe550c23b46fc2d

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.1.9.dev202305271685116202-cp311-cp311-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.1.9.dev202305271685116202-cp311-cp311-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 f3dedd3b96fad671ce19a344ad38bee69f5bf4af8a98b3662c1ced009f00edad
MD5 d2f0d6c5ce9ea4ca4a2165110a917bc5
BLAKE2b-256 fa0796c322fd3e4da1ebc3d87cfdd9737a07f7c2d2c37b2a1b90c92b27c1de18

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.1.9.dev202305271685116202-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.1.9.dev202305271685116202-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 3caf301df51c6ddf1c3a8d1e0b3546533fd6ef70ad0813c576a66d987e292ba5
MD5 8bf6f9a53f3d3b06bb694a702f3c636b
BLAKE2b-256 2518d7381c037abf6aa0ed0c548cdfa9e7668abc7f7e0a6c62833782836d82a1

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.1.9.dev202305271685116202-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.1.9.dev202305271685116202-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 33cb6d194c3f00aab2f503af51ab38236780b830d538e38b1bacf0ab87e82b5e
MD5 f747ee363e0948961eb1fadaebd4dcdf
BLAKE2b-256 261c40c98b574b36d0948402c70c1b35bdfb236332e4b81275cad3977a595325

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.1.9.dev202305271685116202-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.1.9.dev202305271685116202-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 a910ae461dd7112c7de1d6adaf2ec904c9077ba7432a88d3ac781cadf2299171
MD5 683e05dea7001d5e7a0015efe04d41b1
BLAKE2b-256 055a47970664678903ace85fa4dfd596503e06325ef3dfa2ca041a58016da82d

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.1.9.dev202305271685116202-cp310-cp310-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.1.9.dev202305271685116202-cp310-cp310-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 ae011c5cfcd0cb78bc9077b6823705c042f5c2e63cce229aeb645f46d1fc9a8f
MD5 25dd405bf649a84f9cb3a2a0cb942883
BLAKE2b-256 8f183b73521ef02cce7264254d285943d949aae0096531cb1ed83602e4c618b0

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.1.9.dev202305271685116202-cp310-cp310-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.1.9.dev202305271685116202-cp310-cp310-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 79abccb3d25b01f105af58d4177437db7af8a2ce1f904eb8ada1bdcfa3f038a9
MD5 abcc1b36896663c2baddb6475449a8d0
BLAKE2b-256 50f75d4613905b21ddc6b60b016bd5ed998d5695ebddae08361ee8a119096835

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.1.9.dev202305271685116202-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.1.9.dev202305271685116202-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 3e7228e0aa8533bf38bc7c05eb39f333f7e67f74380aa6e822563b11eba05f47
MD5 644d3b1b30a8e0a9412c1929d549dbbe
BLAKE2b-256 6bb8df0bc6667cad762506ef8fda8683fc2c5427afb812fd24780a56c959335e

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.1.9.dev202305271685116202-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.1.9.dev202305271685116202-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 2540621d1a9c7f1ce8b4c2dc52d3bf3eaa7354211400089402dbb8d8e2493dc5
MD5 5e6649bb071e651ee52dcd04f331a603
BLAKE2b-256 07f3ff3b2218dff4c51db7e398a2b21f98af84255ef5fa516e0b61c5523f83f2

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.1.9.dev202305271685116202-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.1.9.dev202305271685116202-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 18e55994129df041731fc343dc14429b90ac1be98c4c0a6510fec31e859e3a84
MD5 608f070a395b6c2187dcf69306ca20f7
BLAKE2b-256 d519d653d8c170586451a1b8402cd011fa0ee558fe3b1e6a6b0fc31e1c90760a

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.1.9.dev202305271685116202-cp39-cp39-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.1.9.dev202305271685116202-cp39-cp39-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 112ef7f1039fe637e7f541ee737fb4c61042d5a0ca63b0d9ba7e012f938ab7a9
MD5 6a19d6505f1efec1b2b350e791329221
BLAKE2b-256 497700f77333c35a075d7a3c3c6dad6d39a195825b14a7d1e723f56eaeeb2b24

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.1.9.dev202305271685116202-cp39-cp39-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.1.9.dev202305271685116202-cp39-cp39-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 5164f8c85cffa89fdd225ec322e72ec06f24d9d113ee8b050ba4ad26176e563f
MD5 518470d95f8b3e58df0f69a6c41c0c32
BLAKE2b-256 2cd46882ebfcb23e97ee5455a306f134823700e82708ad0bae201815097aab42

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.1.9.dev202305271685116202-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.1.9.dev202305271685116202-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 818e404b2be876197dd52cdfb539bf87c9e807ed2034114b3451b674a1d77ea8
MD5 db9435cffa7a0efad845753c04c698e9
BLAKE2b-256 c9d922e2c861c87c785457d87f08646e2427f655f7b6ecb6a2c29bfc43810807

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.1.9.dev202305271685116202-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.1.9.dev202305271685116202-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 3786535c9dac8131392ce7b25e0da8103b6b11d68e029b8c45852436516dd5c4
MD5 ee6cd50bd38cc32e44a6e6e693ac0ea7
BLAKE2b-256 4f6e394c3295464345a5b655456f50a17eb848b443321d79984dbcbcdd74cf92

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.1.9.dev202305271685116202-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.1.9.dev202305271685116202-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 70780b08b58f462736c82ad637f9fbc6b52ec0ebc20db10f3fe7c7323d2e9f52
MD5 66f23cd59cc636804de6e8611974dd4e
BLAKE2b-256 7f054d517cf11b55bd628a029bf9b62d0d42dbbc6d65d27d12ee6fb6ba18a525

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.1.9.dev202305271685116202-cp38-cp38-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.1.9.dev202305271685116202-cp38-cp38-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 de8e57cabf96c3978e4e986f3d95edcea83f5568f1b1eba2125b7e5a48ccdb9b
MD5 56c49340a3e6e51edd73b918e9e9884c
BLAKE2b-256 366cd5c70c378e3e8ddaf7d88a3f3592ab9ccabee55300ebb118b7c8dcc5a9ff

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.1.9.dev202305271685116202-cp38-cp38-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.1.9.dev202305271685116202-cp38-cp38-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 985d5d1fae17fd4cceab45524351f5154e8d940126b79e49f75d896871fd4f15
MD5 f0b3285d4899f1e244e2ef113f1fcddb
BLAKE2b-256 49890f9a1958e1c6a3bbba6750aef4dfb15fadd3dcb90a4a8aa7d19dff2c2e7e

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.1.9.dev202305271685116202-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.1.9.dev202305271685116202-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 e60b0c486997aa5d5b54d431d2660c5e755f1a534bd70e5d2bbbd883616ebd8e
MD5 ad0006771c6366ef462e59d7bf8e0cf0
BLAKE2b-256 17e4c898a7a096104a33b526635189d85fa7edc0ea0b05d01283b2d27faeebf1

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.1.9.dev202305271685116202-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.1.9.dev202305271685116202-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 eee53d014f5c49c055e4b60a423c41844328d1c71dade722ffc946ac68b2cd14
MD5 e0f6fcfff3d8453b1a1e585b16c1a2bc
BLAKE2b-256 71454504090a50b52afc0f7c36f13cdbf2e6c571db8ecd99c769578f253fb7cc

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page