Skip to main content

Bayesian networks and other Probabilistic Graphical Models.

Project description

Description: pyAgrum is a scientific C++ and Python library dedicated to Bayesian Networks and other Probabilistic Graphical Models. It provides a high-level interface to the part of the C++ aGrUM library allowing to create, model, learn, use, calculate with and embed Bayesian Networks and other graphical models. Some specific (python and C++) codes are added in order to simplify and extend the aGrUM API. The module is mainly generated by the SWIG interface generator.

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

pyAgrum_nightly-1.8.1.9.dev202305291685116202-cp311-cp311-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.11 Windows x86-64

pyAgrum_nightly-1.8.1.9.dev202305291685116202-cp311-cp311-macosx_11_0_arm64.whl (3.8 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

pyAgrum_nightly-1.8.1.9.dev202305291685116202-cp311-cp311-macosx_10_9_x86_64.whl (4.3 MB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

pyAgrum_nightly-1.8.1.9.dev202305291685116202-cp310-cp310-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.10 Windows x86-64

pyAgrum_nightly-1.8.1.9.dev202305291685116202-cp310-cp310-macosx_11_0_arm64.whl (3.8 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

pyAgrum_nightly-1.8.1.9.dev202305291685116202-cp310-cp310-macosx_10_9_x86_64.whl (4.3 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

pyAgrum_nightly-1.8.1.9.dev202305291685116202-cp39-cp39-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.9 Windows x86-64

pyAgrum_nightly-1.8.1.9.dev202305291685116202-cp39-cp39-macosx_11_0_arm64.whl (3.8 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

pyAgrum_nightly-1.8.1.9.dev202305291685116202-cp39-cp39-macosx_10_9_x86_64.whl (4.3 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

pyAgrum_nightly-1.8.1.9.dev202305291685116202-cp38-cp38-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.8 Windows x86-64

pyAgrum_nightly-1.8.1.9.dev202305291685116202-cp38-cp38-macosx_11_0_arm64.whl (3.8 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

pyAgrum_nightly-1.8.1.9.dev202305291685116202-cp38-cp38-macosx_10_9_x86_64.whl (4.3 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

File details

Details for the file pyAgrum_nightly-1.8.1.9.dev202305291685116202-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.1.9.dev202305291685116202-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 998386ef4043b79ab56709d295e145fc7cf1ae227ea37a72befbd7c424975a0a
MD5 4bddb65d35816f6b369b51de8dfa3041
BLAKE2b-256 f955bd82d7eaf80c738001b238147dac21a5a9b5a9c2328fc1da7bf50b8a4531

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.1.9.dev202305291685116202-cp311-cp311-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.1.9.dev202305291685116202-cp311-cp311-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 57fd2028412715dfd54f3af3eb26b5a0916c4107869e2251c83c4d3eadbde04b
MD5 23f6c490fcf0b6be95f3661223c7a2b9
BLAKE2b-256 2a55e0dc865621c37db579352c5735bcb284ffb1eb340942799abda0e1451ae7

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.1.9.dev202305291685116202-cp311-cp311-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.1.9.dev202305291685116202-cp311-cp311-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 549e7d760de1397c4c6f0ffa195dcc2257c0ac62e48b45a19c1dc90ec11496b2
MD5 68316bafd5b1cb654b0d34a399775ae4
BLAKE2b-256 e34a706e2f6868512d181d0bbfc87216928d0a9b704c41fc6d137848b9973541

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.1.9.dev202305291685116202-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.1.9.dev202305291685116202-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 ae1ce554e0cac3099d1b282426e94e1c4a111bc765893188fd0d0611654af580
MD5 5304b320ab5e35b8775e3c7447766db9
BLAKE2b-256 1e708cda329bfd218d29c0e5827a61e3936bce6e8e59c0c49657241ed9110d62

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.1.9.dev202305291685116202-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.1.9.dev202305291685116202-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 41750e789bbd58b77b934f815180d10f916b1e4b38118985cf12f93270e47100
MD5 526a90924ff6d5135bc9de454a946ff5
BLAKE2b-256 165da5e61d24675604dc228c44fad20997ef3f3c9d6efc8f27e4b38f4915fed4

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.1.9.dev202305291685116202-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.1.9.dev202305291685116202-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 cdf8f3b432b8aa77db5b56e0cacaf14bf7321e563149a1c0b0541a778613e48b
MD5 0d20858c572c77f3148766b7ce43b809
BLAKE2b-256 13a6dc0192a0811311afb6daf5bf3a0e3493ddd80e8224e032f2a991d71f0343

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.1.9.dev202305291685116202-cp310-cp310-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.1.9.dev202305291685116202-cp310-cp310-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 e71930c0f33d5c5c0339001dac8aaa1a3475e8b2e523053405abcfaa8e63a174
MD5 87b0839df2f89a71537d579381aa9fdd
BLAKE2b-256 b659048fd21d5d0d318ab8509ead43fc987d7897addfdf0dc821343720beb92a

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.1.9.dev202305291685116202-cp310-cp310-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.1.9.dev202305291685116202-cp310-cp310-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 9deef4e5d664a21f74042d025eca201d6dca400e7e961232db75df4e30a1d654
MD5 04f519249c0db4db946d1a26970e91ab
BLAKE2b-256 f8b8851806814f985d875126fc6cf81b3615fb87ba8b759336bc2a8e145dae4a

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.1.9.dev202305291685116202-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.1.9.dev202305291685116202-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 8e041704226d3867805226928304d39b4626f3a1867cb7777682715c1b459fdf
MD5 f4e2578f24bfd8735ff64834e855e0ae
BLAKE2b-256 92757febaad7fad9dc856addd66371d882193a2c87bbaac975fc63256ef5124f

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.1.9.dev202305291685116202-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.1.9.dev202305291685116202-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 aceeed436694a788c897c95d3fa53b3bcf540f4123f5afe2b8b1f7c60585801e
MD5 5044523c2e85d1c218bfe5023d8f14dc
BLAKE2b-256 0d3db907d98d2bf631bbc91b2352112e0bfaf5850d07656092d8e8aebab43b59

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.1.9.dev202305291685116202-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.1.9.dev202305291685116202-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 811ba9cd28cb56f809f69bc981fe006b7d07b8a005af24e31a5150794053442b
MD5 d8c8a8e7f4c6173728155a3a74e66fc0
BLAKE2b-256 4d37f4f87407453fe6d6a6ba5cf2fb5ff90754bff989c858aa5e6f9dd81b6a75

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.1.9.dev202305291685116202-cp39-cp39-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.1.9.dev202305291685116202-cp39-cp39-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 730b9edfc3df7d4a545ba2c9897217e540fd461c02ec2872e4f35a6f24e3141f
MD5 5715d47f46777f0287c4a614472616fe
BLAKE2b-256 a27fb1aeae491031f21cc1e6112de41f46aa0295fec28dc3c0fec7cf2d3228b1

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.1.9.dev202305291685116202-cp39-cp39-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.1.9.dev202305291685116202-cp39-cp39-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 1805d04b74f4b2effc46c473ededd1c7565e74e53689ca079dec92e7f9417ba3
MD5 7f0803072b453d932d6efaa872d1db27
BLAKE2b-256 23920b54acfbb9584de8b2bc7160595bbe06a4c30c1ae065b92ad8f52a4395f4

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.1.9.dev202305291685116202-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.1.9.dev202305291685116202-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 abbd123f5e769df3fdb69119196b0b412fdd941e727c12d6e44774ee7e2f2acc
MD5 c72953d64cbb7a45146bc92cb9d2445c
BLAKE2b-256 3e0a4d0286a20d6f57e4ba54adc1235b7e2e43c794d1c4528b671010bf0687cd

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.1.9.dev202305291685116202-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.1.9.dev202305291685116202-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 b04dc475320eed60c5562256b393422bfecdf7ee78743586a9819bf6bd793f7e
MD5 06c9170d732419f577ef1584a97583d0
BLAKE2b-256 66b200ad6d218db93c73f4255173bf290e7c142df741a5983ef463f26cecff74

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.1.9.dev202305291685116202-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.1.9.dev202305291685116202-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 3e6f30f1f0dfa2ddaa579022418247b777b06cc7b4c7de90994d9ccb3c6ed04f
MD5 6b99566125eccee6f08cb43cbe9ee7d0
BLAKE2b-256 885d13dd9be818857662f3b610491a8e77ee1d0044ae645e8947f5c6388ed90f

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.1.9.dev202305291685116202-cp38-cp38-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.1.9.dev202305291685116202-cp38-cp38-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 22156cd070dff2f9eed931bd0c37b33153154a42cef6c55b6bc4193a2b47183a
MD5 1ff1bf1c476d29d81348078a856fc352
BLAKE2b-256 101dd0545b399fd23018e7aad8616baef101ba70937c4a38dc459b3ad822fb73

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.1.9.dev202305291685116202-cp38-cp38-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.1.9.dev202305291685116202-cp38-cp38-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 30690b16d3dcd043b24ddd59f6eb77c6a54295c3fa488b727ad3f295d369578f
MD5 1cdd9d041b378fd17b362c6c08d6f979
BLAKE2b-256 f6f96b5d89911896eb01c636d683cc25c174df467e9029802d6852e01239565c

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.1.9.dev202305291685116202-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.1.9.dev202305291685116202-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 528780c9af16a1f1411f5cd6dc6c5d0076c684242afe1fa7be716a41db56f198
MD5 4cd2d79d7cffed06eab79efe182aa977
BLAKE2b-256 e506d7026137f54d1ac6ba59f29ea86976a28979f565e05369622172abd0da08

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.1.9.dev202305291685116202-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.1.9.dev202305291685116202-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 d3eaaee72ab6e1f781ebbea4889879ec52548c09ca14a9f484155ad93201e584
MD5 13cb249c6e6fbb30b750e22b2c13f41c
BLAKE2b-256 b832af700454493abcb97ad8a24c98a12cfecb1938566088a3b654a07e9a2305

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page