Skip to main content

Bayesian networks and other Probabilistic Graphical Models.

Project description

Description: pyAgrum is a scientific C++ and Python library dedicated to Bayesian Networks and other Probabilistic Graphical Models. It provides a high-level interface to the part of the C++ aGrUM library allowing to create, model, learn, use, calculate with and embed Bayesian Networks and other graphical models. Some specific (python and C++) codes are added in order to simplify and extend the aGrUM API. The module is mainly generated by the SWIG interface generator.

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

pyAgrum_nightly-1.8.1.9.dev202305301685116202-cp311-cp311-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.11 Windows x86-64

pyAgrum_nightly-1.8.1.9.dev202305301685116202-cp311-cp311-macosx_11_0_arm64.whl (3.8 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

pyAgrum_nightly-1.8.1.9.dev202305301685116202-cp311-cp311-macosx_10_9_x86_64.whl (4.3 MB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

pyAgrum_nightly-1.8.1.9.dev202305301685116202-cp310-cp310-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.10 Windows x86-64

pyAgrum_nightly-1.8.1.9.dev202305301685116202-cp310-cp310-macosx_11_0_arm64.whl (3.8 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

pyAgrum_nightly-1.8.1.9.dev202305301685116202-cp310-cp310-macosx_10_9_x86_64.whl (4.3 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

pyAgrum_nightly-1.8.1.9.dev202305301685116202-cp39-cp39-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.9 Windows x86-64

pyAgrum_nightly-1.8.1.9.dev202305301685116202-cp39-cp39-macosx_11_0_arm64.whl (3.8 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

pyAgrum_nightly-1.8.1.9.dev202305301685116202-cp39-cp39-macosx_10_9_x86_64.whl (4.3 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

pyAgrum_nightly-1.8.1.9.dev202305301685116202-cp38-cp38-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.8 Windows x86-64

pyAgrum_nightly-1.8.1.9.dev202305301685116202-cp38-cp38-macosx_11_0_arm64.whl (3.8 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

pyAgrum_nightly-1.8.1.9.dev202305301685116202-cp38-cp38-macosx_10_9_x86_64.whl (4.3 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

File details

Details for the file pyAgrum_nightly-1.8.1.9.dev202305301685116202-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.1.9.dev202305301685116202-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 13bd78f722d21f167e1f01a1fec549656587615695bf0dc3b4e8e3639b4abc6a
MD5 c4afce79347929c63f91dea5bdcfc6db
BLAKE2b-256 510fc7ebf8b67efe9ccee31c5a86c2ec8f364987f9dedffdfa04f1a4d432bf44

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.1.9.dev202305301685116202-cp311-cp311-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.1.9.dev202305301685116202-cp311-cp311-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 7b19012ac39821e47c58456bcfc6a960c831234d15220df5bdc785e87e4b1afb
MD5 d78437a22f0e8361aef1e404e61173c8
BLAKE2b-256 13f003eb9126498e9c199df1939b9793515ddf7539f077ec94031e157fbd7988

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.1.9.dev202305301685116202-cp311-cp311-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.1.9.dev202305301685116202-cp311-cp311-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 13b7dc600db7fe0a630c3b9be573fea657762f71e3cae1fa1adb97825c24ff21
MD5 cce3279f6d15ace862e4dcb80a045f7d
BLAKE2b-256 39a477aa31d3e8b34b8fda1c936acf9412913d4d556db23c241a3c4419d1c0c0

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.1.9.dev202305301685116202-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.1.9.dev202305301685116202-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 ac541970e5e21e4264c0af2418c213441f4ca2df833218aad04e661a881bfc6c
MD5 c0ecd902f1b4a57261f40c0c3fd17459
BLAKE2b-256 802c6dec69e8ab3f153493bb529219e65919f5f8ca4123dae6b871feb7e9fa83

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.1.9.dev202305301685116202-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.1.9.dev202305301685116202-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 c76b8656b8a800138a38236d5439b5abdb245f9c5819c3bbf144a77fdd6f0fff
MD5 05876c045a23a80771c34492c581cc82
BLAKE2b-256 1af4539058547df0fe5b48824fed54911bb639e3d63bdac6621ebc609a7c265e

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.1.9.dev202305301685116202-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.1.9.dev202305301685116202-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 4265e907a8f5de8de4b71059dd7bb247ced753c061b0f2f82e133c3356f7871d
MD5 dba79ee1355e26c9a78c490334392da0
BLAKE2b-256 6ade0283e161cb61d7bb7ef203dcaea275829a8bde8e7e3fd81927deeffd6c02

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.1.9.dev202305301685116202-cp310-cp310-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.1.9.dev202305301685116202-cp310-cp310-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 870d16adc9626c4d4cd977dd73778450e2798a9f0e260ec4847d66526e80c64d
MD5 2791339a6433c630e2a915989f4905b3
BLAKE2b-256 6dbc466acc27fd86600256374b275cacf2d7706bb19e8ba111fa4af1aba1a91e

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.1.9.dev202305301685116202-cp310-cp310-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.1.9.dev202305301685116202-cp310-cp310-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 9477bf644bc3cec8adea71620ac7d8abcb01d46e51c3b0586c3458da997fcfd2
MD5 08676010d41927ea9cc773e91b49a1c8
BLAKE2b-256 7d7467de1497343dc9fd302f6cbb3a18454875f136c9640fea300c43420162f0

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.1.9.dev202305301685116202-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.1.9.dev202305301685116202-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 2f565c5f8ad426345ec3a6bee17711f7d605752aa5e1904d0ecea1bf1c29575e
MD5 487a4bf09401b4c151efab2f195bebd1
BLAKE2b-256 4c6655f0b8528c9dc887248c7d020ada1edd98468bb5cb1afd8ae5786cf87127

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.1.9.dev202305301685116202-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.1.9.dev202305301685116202-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 1f5be40faa751540737f156b319bb5476ac8e35dc7737b41029ab18d1bae5939
MD5 5fcc55f1e23191d4cb64a649e2c4c107
BLAKE2b-256 3957ef89ccb21199ca9a4e967ce4beeb42d4569f3133922ebca266ddd8fc48be

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.1.9.dev202305301685116202-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.1.9.dev202305301685116202-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 fc7455e85bf6ec6515d3511110a742caef5887868cf009dcd532f4dfba89ec1a
MD5 9ac1690549caca21b78b6dd8f199aeb4
BLAKE2b-256 b55b9071f924fba9b9990742389f97e7cdc5d1f05e0de26cda175c1ca67d3a71

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.1.9.dev202305301685116202-cp39-cp39-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.1.9.dev202305301685116202-cp39-cp39-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 8f25f44de504384b1b7d54a19bfbbdef26b3cbe023d5b0b1b2e92956459d16b6
MD5 45145be1f53060784f729a79970b5dbe
BLAKE2b-256 9b14fc3bfc272707df38e84a80963492000d70bd4c091da001d6ba8f2107a901

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.1.9.dev202305301685116202-cp39-cp39-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.1.9.dev202305301685116202-cp39-cp39-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 d6fb270211075ec4dde891df5d0e0401c3e2268aba34cbff73d044b80c1538bb
MD5 d954a6683074b66f05ba3ba1e3d8aecf
BLAKE2b-256 5a4dbba0779084ec15f1dd33424c93dd0532077ad7d2ade359fcf2b226380519

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.1.9.dev202305301685116202-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.1.9.dev202305301685116202-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 228703f00b0f38f5f4978316f84cc51760e5a216cfcd83548f25d5bce32e5d7f
MD5 8dbbe32afa4f369b21f44ebe7f26e825
BLAKE2b-256 cefbd7a0ad6fb5218d2bc445fc4d29d581b035db5d46695c47bd3cd80b9f22f4

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.1.9.dev202305301685116202-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.1.9.dev202305301685116202-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 ce2c59ceb9157cbcec951bd75094b680a92724ae65964f7599ff39a0a1f3dc2a
MD5 4d61e1244e7fbda3e568d29e98fd0877
BLAKE2b-256 2f0841f4c9728595d19cbf8d70e32c1237711309505330cb59bfea7a113dab3d

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.1.9.dev202305301685116202-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.1.9.dev202305301685116202-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 dd54e0416ce789e9669a62e3478e6096545e1459d90109929c6f2cc6501c74df
MD5 dcbc500f0218198e2fc865fbf0d1e4d6
BLAKE2b-256 6b1a9947b5280a8959959776760879563f6312d70a3fd73b76b6d9fe0249f5e8

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.1.9.dev202305301685116202-cp38-cp38-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.1.9.dev202305301685116202-cp38-cp38-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 eae2a151aa69fa7dfffdea69d0b612d3f070170f4d51742e3f0e530ea02e34ad
MD5 fc326bfdc01e0ca6f1e7776a81bba0d2
BLAKE2b-256 a88bb637efd2f2d4baba5c3e3faf04d2d767919f73a47494ed9fc103a9744e40

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.1.9.dev202305301685116202-cp38-cp38-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.1.9.dev202305301685116202-cp38-cp38-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 cac77e097c91b5a80f90bcf5e9cdff25f12f634b98482051281f19b77dad6ffc
MD5 2e2909544754d440b65510275f7939d1
BLAKE2b-256 e0caa5bc7f883f7e5ee0806a806822c6a94e60a47d94f9007cef0840ed51ae9b

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.1.9.dev202305301685116202-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.1.9.dev202305301685116202-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 71b8f509e28feacabe91cbe7500892bec9cd4bb00ddbf6b9ef31cf37baa62583
MD5 c77f97a5b713e610a6e546c597a19f13
BLAKE2b-256 62a383b2318611e31b6ea0c2e5eb8c7897ab186e1b18025a147da46ef8111f15

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.1.9.dev202305301685116202-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.1.9.dev202305301685116202-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 3dee67f0f3be9ae01639ac10833bb48595d9d68814fe83521bf73b196d2fb5dc
MD5 04cce3fc3f83b41e635e22be4df55f7b
BLAKE2b-256 90a60808154efa563cc3a6cfd319350d26a614eb706c641b6840a2c1fa3803d1

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page