Skip to main content

Bayesian networks and other Probabilistic Graphical Models.

Project description

Description: pyAgrum is a scientific C++ and Python library dedicated to Bayesian Networks and other Probabilistic Graphical Models. It provides a high-level interface to the part of the C++ aGrUM library allowing to create, model, learn, use, calculate with and embed Bayesian Networks and other graphical models. Some specific (python and C++) codes are added in order to simplify and extend the aGrUM API. The module is mainly generated by the SWIG interface generator.

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

pyAgrum_nightly-1.8.1.9.dev202306011685427304-cp311-cp311-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.11 Windows x86-64

pyAgrum_nightly-1.8.1.9.dev202306011685427304-cp311-cp311-macosx_11_0_arm64.whl (3.8 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

pyAgrum_nightly-1.8.1.9.dev202306011685427304-cp311-cp311-macosx_10_9_x86_64.whl (4.3 MB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

pyAgrum_nightly-1.8.1.9.dev202306011685427304-cp310-cp310-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.10 Windows x86-64

pyAgrum_nightly-1.8.1.9.dev202306011685427304-cp310-cp310-macosx_11_0_arm64.whl (3.8 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

pyAgrum_nightly-1.8.1.9.dev202306011685427304-cp310-cp310-macosx_10_9_x86_64.whl (4.3 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

pyAgrum_nightly-1.8.1.9.dev202306011685427304-cp39-cp39-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.9 Windows x86-64

pyAgrum_nightly-1.8.1.9.dev202306011685427304-cp39-cp39-macosx_11_0_arm64.whl (3.8 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

pyAgrum_nightly-1.8.1.9.dev202306011685427304-cp39-cp39-macosx_10_9_x86_64.whl (4.3 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

pyAgrum_nightly-1.8.1.9.dev202306011685427304-cp38-cp38-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.8 Windows x86-64

pyAgrum_nightly-1.8.1.9.dev202306011685427304-cp38-cp38-macosx_11_0_arm64.whl (3.8 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

pyAgrum_nightly-1.8.1.9.dev202306011685427304-cp38-cp38-macosx_10_9_x86_64.whl (4.3 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

File details

Details for the file pyAgrum_nightly-1.8.1.9.dev202306011685427304-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.1.9.dev202306011685427304-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 701c0d993505d1b41e8ea20c1cd1fb0fed694d68394541618fb362c50286b190
MD5 caef48f4d842b2804770e2120b397fc1
BLAKE2b-256 1382da7e978fc7777aabf735c699c81ea5f7a42a2ca08a3a825bc21cea889522

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.1.9.dev202306011685427304-cp311-cp311-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.1.9.dev202306011685427304-cp311-cp311-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 719455ec100f840deda8e3000445231bec188608a5c58d52739344cfea4afaa4
MD5 1a7291376a5320d741b245e05e5e33bf
BLAKE2b-256 489c9db4645f46dfa65dee99f3747c16c5370003a2cc765b1695bcab5dcb28cf

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.1.9.dev202306011685427304-cp311-cp311-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.1.9.dev202306011685427304-cp311-cp311-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 9de26772ec4ccb3ccaafb8a2ab7c3c4737ca1ae1c5fa7874c51441d454a7f7cb
MD5 2c66d6b5b2ac0d903c7f38b06426bfc4
BLAKE2b-256 a5dd5246b782fb4402bde56b96e747cb9b6b0b960e125c7a05137d9b0d98bd6d

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.1.9.dev202306011685427304-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.1.9.dev202306011685427304-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 0c10bcc730d624adde748903d64e4316385e3bfb8987aa7eb90de15c34462c21
MD5 39f8778be1bb5ace4cb4c5514dc34b64
BLAKE2b-256 e114647526a96ff285b869ec0c4e3b7eac3a1c0411b923941d66a506fd1f017d

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.1.9.dev202306011685427304-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.1.9.dev202306011685427304-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 e27f5645eb2422c360cefa292eaeb4381fda6a1403fc74851b84d89dbad504ea
MD5 c9096f0ca0a898175d649428957fa557
BLAKE2b-256 48e86eb7f56ad07374a51aa7e56416e2ee3baa2b23f6ba3c62487fe0e6b9aa54

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.1.9.dev202306011685427304-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.1.9.dev202306011685427304-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 6c0a523b9aa45f9875412f7b281ce82fdcc2ba3ae1325666628807f23a54e7ed
MD5 5ae77eaf8cff6affce0d25968c7dce06
BLAKE2b-256 31edb98d346b24dbb21276823b64b9cfd83d8274972b4902b6db7bdc2aaa08ce

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.1.9.dev202306011685427304-cp310-cp310-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.1.9.dev202306011685427304-cp310-cp310-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 7a1c3291766b4d4d81365e750f87f3545abef96acb186b59f4b2d3f922833c24
MD5 eb3d7e0bc9c4b136b52f34a5e43ca678
BLAKE2b-256 92df0f0b17e8a8b1ed0e78e6e38ca52b86d6b2ce4f55a716ceac21c0129661e1

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.1.9.dev202306011685427304-cp310-cp310-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.1.9.dev202306011685427304-cp310-cp310-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 465620431fe93097dea7fa8b21019e1b24c466b160b7f5d1ddb5bbda3e56e0b7
MD5 24ddd8a5bfca4d22923bef59d395271b
BLAKE2b-256 bacdbe42d42625543dc0b593600cca93bbeba43f102a316a6d67b11c7bb92c30

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.1.9.dev202306011685427304-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.1.9.dev202306011685427304-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 e0695ffabf6a07c5fb4fe6b025a6d8be2e03ee896a2f308bafbfd8d299e56a21
MD5 a36295a8bb40d7f3929a0a00f5d63602
BLAKE2b-256 c67061b191027d7af513982175cacb32c54d1b00df44afdd48c8a6e555becf25

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.1.9.dev202306011685427304-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.1.9.dev202306011685427304-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 6d5f79f7e16eb15571f2d29946df69841eb7e005ef8d1167bc137de14177b45e
MD5 8e54e1687644491302236a10787803b0
BLAKE2b-256 a16f271c3fbb4c912bb5d2de1cf9d8bd712084267ac048ccad6206ea6c9bb375

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.1.9.dev202306011685427304-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.1.9.dev202306011685427304-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 276acd42c7fcef09341de03774a4c4d760f2734a6ce6a29d521d3667ad677493
MD5 0a58e277b3d89adc94ed694f13dbcb12
BLAKE2b-256 95a46272b5afd14c2d94a8023faa0bbafeffa011f4b763eab4657f1262b1685c

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.1.9.dev202306011685427304-cp39-cp39-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.1.9.dev202306011685427304-cp39-cp39-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 ac55fa3698fff16041c43851e04593ffcff3bab6652d2d77a94b771828c520f2
MD5 289f41d6d396d13afd3103b7065e235c
BLAKE2b-256 d19bfc038a6469db5f2cc8d7436a023826a3717be5f7836887d9f12909c82a50

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.1.9.dev202306011685427304-cp39-cp39-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.1.9.dev202306011685427304-cp39-cp39-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 0fa719863aebd1b463f52ff475d7a7d444546a3350d9efa878119649d0d58db1
MD5 f7329e51180635b8fa01d24a867ff2f6
BLAKE2b-256 29d608b699e0f9f7eb040763093fb7463cef5676c3848caf390ea42007d77d96

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.1.9.dev202306011685427304-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.1.9.dev202306011685427304-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 143371ac42ab1f3e99f8f11fffbdc1c318d4f7c6a2b67b18f0d9fb80a9423d5d
MD5 21347f3427e6b9d68d9b4f1ce5a6a339
BLAKE2b-256 ba1ae7b300329bdbc0693ee89ddf8c2a2db2e4b278b64d3da28345742d275bb9

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.1.9.dev202306011685427304-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.1.9.dev202306011685427304-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 6b2fffa018726143eb62af208376ff3b1a1718c976197d9a66481a1e68b10237
MD5 0b1a521a2be877a23413707fa891670b
BLAKE2b-256 6d6e8e10db09e534076086afa9081b8640cc9fcaae2bde19e363029dfaed701b

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.1.9.dev202306011685427304-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.1.9.dev202306011685427304-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 db5d1a196ba736f8de78ae055e14cb5082645f09661370a7111825a43fb77fdb
MD5 aead5a80a25365b1b892bd622eed5015
BLAKE2b-256 3ab159548726dbebaff9b0e3ccf6e4b49078a9f7cacae9bd3d6f058eb30a4a42

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.1.9.dev202306011685427304-cp38-cp38-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.1.9.dev202306011685427304-cp38-cp38-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 ee30024da7331406d7df7fc9c36db0ddf8375c08eb982df91737ba8771839ec6
MD5 4824545fda7df2ffe45592c54b6eff1b
BLAKE2b-256 0b2b0d47b8c44c1a2cf7b8158b200a22d9b9f03dcc6201f8fd1f09c7182caa4c

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.1.9.dev202306011685427304-cp38-cp38-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.1.9.dev202306011685427304-cp38-cp38-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 d24eaacff4cbbb2b451cab7e9513a1b978a3849f044168bda08e118dafdb0a36
MD5 4b53262fffac897a1a14e1c9af1baf66
BLAKE2b-256 049124f5b2e5d67445c9a1e12a8e53f201fcb25c410ae4a018fd90e19e8a3899

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.1.9.dev202306011685427304-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.1.9.dev202306011685427304-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 3e63383de4a5212100f797e29ef527184a743ff28daebfbbd92a77ad8bd24cff
MD5 17bb62fc2f9632a8440d2b67dc6df952
BLAKE2b-256 2c38797d39f46f61ea81b5c4e2d8bec1adc73fdca321596593c806b0539673f1

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.1.9.dev202306011685427304-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.1.9.dev202306011685427304-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 8f24ba12216b018f745c8c10da2491c8cbfd9956cc6363ab1d2e4000a870c466
MD5 bfd131cb2b99697be9a86a9e10984e60
BLAKE2b-256 859d9756e92fd9e351fec4abbd86c241c0f57c27eeae20317a7e210320ff06dc

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page