Skip to main content

Bayesian networks and other Probabilistic Graphical Models.

Project description

Description: pyAgrum is a scientific C++ and Python library dedicated to Bayesian Networks and other Probabilistic Graphical Models. It provides a high-level interface to the part of the C++ aGrUM library allowing to create, model, learn, use, calculate with and embed Bayesian Networks and other graphical models. Some specific (python and C++) codes are added in order to simplify and extend the aGrUM API. The module is mainly generated by the SWIG interface generator.

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

pyAgrum_nightly-1.8.2.dev202306021685623169-cp311-cp311-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.11 Windows x86-64

pyAgrum_nightly-1.8.2.dev202306021685623169-cp311-cp311-macosx_11_0_arm64.whl (3.8 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

pyAgrum_nightly-1.8.2.dev202306021685623169-cp311-cp311-macosx_10_9_x86_64.whl (4.3 MB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

pyAgrum_nightly-1.8.2.dev202306021685623169-cp310-cp310-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.10 Windows x86-64

pyAgrum_nightly-1.8.2.dev202306021685623169-cp310-cp310-macosx_11_0_arm64.whl (3.8 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

pyAgrum_nightly-1.8.2.dev202306021685623169-cp310-cp310-macosx_10_9_x86_64.whl (4.3 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

pyAgrum_nightly-1.8.2.dev202306021685623169-cp39-cp39-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.9 Windows x86-64

pyAgrum_nightly-1.8.2.dev202306021685623169-cp39-cp39-macosx_11_0_arm64.whl (3.8 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

pyAgrum_nightly-1.8.2.dev202306021685623169-cp39-cp39-macosx_10_9_x86_64.whl (4.3 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

pyAgrum_nightly-1.8.2.dev202306021685623169-cp38-cp38-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.8 Windows x86-64

pyAgrum_nightly-1.8.2.dev202306021685623169-cp38-cp38-macosx_11_0_arm64.whl (3.8 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

pyAgrum_nightly-1.8.2.dev202306021685623169-cp38-cp38-macosx_10_9_x86_64.whl (4.3 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

File details

Details for the file pyAgrum_nightly-1.8.2.dev202306021685623169-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.2.dev202306021685623169-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 58118349c1d76a99f36c0364712da647bc4c3f752cfedc083513d8c7d36d8fdc
MD5 502ad35f250638dd87b6e81754da46b8
BLAKE2b-256 fa7f112e864eba274398f0bdaff7d356c45c8e1a97d825d0232dd193af82e0b6

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.2.dev202306021685623169-cp311-cp311-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.2.dev202306021685623169-cp311-cp311-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 ac4689a6b57218abfc4129409e20b302ccb791c9c7e1932de784b378995aadef
MD5 a1863d6afdffcf25d631ebf7183834cb
BLAKE2b-256 958bcb04255cf2193e458b59fc030d49897e20fcf496f857fdb41275d49964f1

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.2.dev202306021685623169-cp311-cp311-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.2.dev202306021685623169-cp311-cp311-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 e6e6e70defe3a6747894620186c9edd417fe208546cb2dcd7f01fa807a6777e5
MD5 f2c77ee12f4fc0bc7aef3c9ed4e87086
BLAKE2b-256 05b1ff57b0e488f7426f90260f43bdbbb872123f596b2441a14d0d054c877099

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.2.dev202306021685623169-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.2.dev202306021685623169-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 6f1c9d8454caf58cbd2da790bb9ae07998542b23a5591b0f7a87c7b0e1a96699
MD5 9e7b5a5f28576abb561c2d1a06c01b0b
BLAKE2b-256 c93e7811b16482bff423f23d435cd5340abfc0e15449cd3f31b2a27ad80c3233

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.2.dev202306021685623169-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.2.dev202306021685623169-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 aa39c19b0d641cd44b68344efcc044d420d2a1b4f37b1d8141bad62674dc968c
MD5 6d0ff561fe6a61548ca06ccfbac36759
BLAKE2b-256 1f3f6c61f5350a5d0b6a11b146d6ba4e4e0a82dbcd7f4b91ea9a1bd4faac53d1

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.2.dev202306021685623169-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.2.dev202306021685623169-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 168975d3d3f929bdbe3b58b15eb697404c314377ce477e657cf9e225bacb7edb
MD5 632c71a2d02e34d7cc3d16bc6bfeee50
BLAKE2b-256 a3b3e060a4e552ca329e4ffc458a7db2dbe20d9f698ded96b56f8227a9325a28

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.2.dev202306021685623169-cp310-cp310-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.2.dev202306021685623169-cp310-cp310-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 3c55d5bd44c0053c99d77f96744a0d1728823370a31673999969461ce598ad86
MD5 f3e56cbd28edf78323143874f3beaba0
BLAKE2b-256 cdab6b904643cd27c749b398e0438a31115ca0599ebcd6ffb3ce99087fb3a2b1

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.2.dev202306021685623169-cp310-cp310-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.2.dev202306021685623169-cp310-cp310-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 488625dd2183e0c9aacd24ac6858c7716d69289f5459dbae0c3db06bb69af15a
MD5 efc9f67c8e0bc7466ffa45b7e06528b4
BLAKE2b-256 391292e38ddc281156978700d21e30140e4c36dbd181437f2db8afc46f2a0bbd

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.2.dev202306021685623169-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.2.dev202306021685623169-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 00ceb8cc43bd1919a3aa3859e5a6ccfcb985e804671759cbcac7be30d4a2a648
MD5 4b7f08dc0cd2b0e57d4d8913e3bad13d
BLAKE2b-256 bc23f20834c964d46b677588e450288505a5bf6429809fe44f33e071a306253d

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.2.dev202306021685623169-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.2.dev202306021685623169-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 1d9a972c6c23c15f2e4507c299250d3ed306c2e239c10bdfb4707fb41d8f093a
MD5 e4bb4dde8b478d1a6e06ebe4d009c06d
BLAKE2b-256 6f7b1fc3cf64d5b3b8ad106c502dabd39337ebaf5ba1df9ba1d7c71f9b337fbb

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.2.dev202306021685623169-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.2.dev202306021685623169-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 14b23ac5659cd862e328997879f14d50141c9515a285a62e002f6e582eb8adfe
MD5 36eb6e101638cc52222728001404ece8
BLAKE2b-256 5993964ce2764a2f839a2786f2a72ec25771f7441d8cd0407a54aec2074bc275

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.2.dev202306021685623169-cp39-cp39-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.2.dev202306021685623169-cp39-cp39-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 3f325ed619d51b6f98b3ff96d45f61a0521462f113cbc509a6ec36eff4579521
MD5 2b00ff7aad0b30e23c8468d111b45d45
BLAKE2b-256 d4b70396931e0c91d0301d42ab6bba1e3c4e3b54a750eeaf31e0742e728675a9

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.2.dev202306021685623169-cp39-cp39-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.2.dev202306021685623169-cp39-cp39-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 6dc38d1aa992f3948a399bc103d93bb015e7ea2b10dcbc4d56bfe9d4e981cf49
MD5 848fb07d96c02a604817c755636c4c9e
BLAKE2b-256 1c76710ce5f36a91a198393792b15ea97eb098049a6c5a2df22fa44ca4994e00

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.2.dev202306021685623169-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.2.dev202306021685623169-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 2399f249fd8428199c5e91d50ecebfc8be1b083d08cdc888e25f59c85ac84ac1
MD5 1438300a3e22b07eb5314a3dc3b9f4e0
BLAKE2b-256 9af390ef8d19a5953185d4825ce95f9fa268b6e0487175fe28874b06c563f7f4

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.2.dev202306021685623169-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.2.dev202306021685623169-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 3596d058d91a66106282b34a02f8bb2c84cc9e386002f19935d2ba58285053a4
MD5 942765ee1032ac93ec388e0ca273f2cf
BLAKE2b-256 ef84b9afea2a8a6e2359ae68569fe6fa2a4bd3a089afa58c7ce905a31e765e25

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.2.dev202306021685623169-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.2.dev202306021685623169-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 f11579171c3229770a9c57ef2393953bccb2eace77b916052a3ba75f4ea7767f
MD5 000bcfabe55e640bf510d8e5f0bf0da8
BLAKE2b-256 58b57fde3a8b65664e5bac0da0641d7abb1045097276a0e40549d9d2d70519f7

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.2.dev202306021685623169-cp38-cp38-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.2.dev202306021685623169-cp38-cp38-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 14b57677a163611ae72cb73b0a9458fd5f862c3cd6788b124d5fcffb069c2c13
MD5 83ed68ea0e0e1f4565bf9fcb39ead7bc
BLAKE2b-256 87c311445cf1c509ff3888242d712e789beea8ae255996a2b9f27a1209d9ad26

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.2.dev202306021685623169-cp38-cp38-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.2.dev202306021685623169-cp38-cp38-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 237d29c83487ce966ba532a6b745305798a2508b3e2f579dfffa4173cbf0e1a3
MD5 44c96c96c30cdbc9a2b372ef3b9e9f04
BLAKE2b-256 9904bd08d4e5e555ee669783b0056cf5e3f84cd5f4d477903bb0c009cd0bc2f5

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.2.dev202306021685623169-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.2.dev202306021685623169-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 6c4afd108e2c7b850833f49068d6cacf7e851700369989b6d376fd0623574dee
MD5 d5d1dfcf73304436d04844d5ec36e64c
BLAKE2b-256 9ede397a6d31f14fdfb400a56d254e7ce624c5d7d9d2a71513c9a2ecdc1e16d1

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.2.dev202306021685623169-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.2.dev202306021685623169-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 af27274515831a731b8c49221ff6a79dbc20fb1bb9019d1721fc4158a308f133
MD5 57ee980312836f1da4f28dbe93a3466f
BLAKE2b-256 bf85afcddc013f624b44d5fc5dabb9edd3af6f8fce907235e7e082c8b00454c6

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page