Skip to main content

Bayesian networks and other Probabilistic Graphical Models.

Project description

Description: pyAgrum is a scientific C++ and Python library dedicated to Bayesian Networks and other Probabilistic Graphical Models. It provides a high-level interface to the part of the C++ aGrUM library allowing to create, model, learn, use, calculate with and embed Bayesian Networks and other graphical models. Some specific (python and C++) codes are added in order to simplify and extend the aGrUM API. The module is mainly generated by the SWIG interface generator.

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

pyAgrum_nightly-1.8.2.dev202306031685623169-cp311-cp311-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.11 Windows x86-64

pyAgrum_nightly-1.8.2.dev202306031685623169-cp311-cp311-macosx_11_0_arm64.whl (3.8 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

pyAgrum_nightly-1.8.2.dev202306031685623169-cp311-cp311-macosx_10_9_x86_64.whl (4.3 MB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

pyAgrum_nightly-1.8.2.dev202306031685623169-cp310-cp310-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.10 Windows x86-64

pyAgrum_nightly-1.8.2.dev202306031685623169-cp310-cp310-macosx_11_0_arm64.whl (3.8 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

pyAgrum_nightly-1.8.2.dev202306031685623169-cp310-cp310-macosx_10_9_x86_64.whl (4.3 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

pyAgrum_nightly-1.8.2.dev202306031685623169-cp39-cp39-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.9 Windows x86-64

pyAgrum_nightly-1.8.2.dev202306031685623169-cp39-cp39-macosx_11_0_arm64.whl (3.8 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

pyAgrum_nightly-1.8.2.dev202306031685623169-cp39-cp39-macosx_10_9_x86_64.whl (4.3 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

pyAgrum_nightly-1.8.2.dev202306031685623169-cp38-cp38-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.8 Windows x86-64

pyAgrum_nightly-1.8.2.dev202306031685623169-cp38-cp38-macosx_11_0_arm64.whl (3.8 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

pyAgrum_nightly-1.8.2.dev202306031685623169-cp38-cp38-macosx_10_9_x86_64.whl (4.3 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

File details

Details for the file pyAgrum_nightly-1.8.2.dev202306031685623169-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.2.dev202306031685623169-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 44fbf57bb18c37ed7fd284e5d0ac6a51c8d036236a63f1149543d2b7284d5fd7
MD5 78ace6fcfe406b92cae68799998272d2
BLAKE2b-256 1e5bf98203ac619a9c86569588b6ba8fb6a1aa31036b9abf5541fa1ffcb9ea7e

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.2.dev202306031685623169-cp311-cp311-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.2.dev202306031685623169-cp311-cp311-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 a186c1b77c1fb6d5c490a7f93a089cbbbcd97344ed0d273f844e41f5e623a420
MD5 67b0661da3c00cd92f06af4cdc36ace9
BLAKE2b-256 003864f8c8eb67081a7af48019dd3448dfb2baeb4991cc3f1cabe320889890c2

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.2.dev202306031685623169-cp311-cp311-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.2.dev202306031685623169-cp311-cp311-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 6fb287a76e668688946f9b52d4bd43f1e712481b1f7bc2c2cfddaac6a0166ac1
MD5 3f63f8dcf7c3e08c94f9316d75719d11
BLAKE2b-256 fe8ee8815e41bd95dd4e8299aefe37e13f91a86fe8da0f7f40f0a249f68ce107

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.2.dev202306031685623169-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.2.dev202306031685623169-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 884bd2ef77dabcae12572989604eaac95f0d46213dea29e59fa9efb8eb0e24f7
MD5 1046c3e62aa91b859bdb1914c5806017
BLAKE2b-256 9ce0f82562f2b66f9a652549528e46c6a5dac1a5f7fae36446f49d2fd0e65a1f

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.2.dev202306031685623169-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.2.dev202306031685623169-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 deedd3fbcb44c6a5576f182afcd63125688f862a4b13efb4ed4da406669772bd
MD5 28b1e60dadea797178a29d56591af501
BLAKE2b-256 7727a88a450ee3ec688fa7e4ef4255433edb06638ced5fd02dadc6e5235252ae

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.2.dev202306031685623169-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.2.dev202306031685623169-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 5ec0d3d74d74f6c2bd03db5ef416e213d707888879fd243caa04f4e779fe786c
MD5 7be4deb9a9559e87c4f81ab65a191e17
BLAKE2b-256 0c64a427df206e80069d336ef88b14c5c57aa31f97025129c8437857c04be818

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.2.dev202306031685623169-cp310-cp310-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.2.dev202306031685623169-cp310-cp310-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 22b628490a8e5b1ed1c55e667c6536e8251f2a01b986afc5033b2b78779a637a
MD5 70132fd5e82192be348aee7333fbfff2
BLAKE2b-256 e529f17d11a0b7b62cbd3ef6941e82b71ace4133d0ab04ee3ea44bfe424c38dd

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.2.dev202306031685623169-cp310-cp310-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.2.dev202306031685623169-cp310-cp310-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 8efec01ddb51bb789e6c064de042e92905fdd22f38a84608fb2496905a336dfb
MD5 00eaab660c72a1abd14fb847ff74502e
BLAKE2b-256 33789d2cbe5ce8f452ca73ea6858672b52568dba1168d7f5f9755ac8441915e2

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.2.dev202306031685623169-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.2.dev202306031685623169-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 a61d1feee2d8d1f6e4132f8e216e8999f0564ab54d77e3683055fa8f0b1d7490
MD5 0b26409896a5dc4b932f959638454da3
BLAKE2b-256 a43f654dacd54777f1273ecb75b822b4c4262dd97d6d7d0d5fc63ce1bf94a339

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.2.dev202306031685623169-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.2.dev202306031685623169-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 031a4faa702516f33414a2ebf5ad442d73559faebf7e725ccb275d4986f7c9c9
MD5 890f9395cddc125523554f39ab2a2c70
BLAKE2b-256 27caf3d4b6e5ef503e504c5eb4653a0430204c100c008e9f11c2736cb0250a7c

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.2.dev202306031685623169-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.2.dev202306031685623169-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 010c9e15027333cd044616cccb5a18c13235bb8867556123e4745d4f8b859bb8
MD5 116a115c8d3320493b0ba046cb44e956
BLAKE2b-256 cf19965871154e761b0e3f521f9a54bf2dc0574105abe30b034c4f0d818a6ffe

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.2.dev202306031685623169-cp39-cp39-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.2.dev202306031685623169-cp39-cp39-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 9d51defc6d7240ec21735a48a1bb7cf591efd367ea7ae70399c831ebe03b879d
MD5 1d057c4d3ee444b0543c1f7ae3bdd664
BLAKE2b-256 3189b6f681a58e563216e0f688ed3d0f04e68e5ff4d896d66c3d5089e2fcca85

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.2.dev202306031685623169-cp39-cp39-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.2.dev202306031685623169-cp39-cp39-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 122084489b812c10aa0c4cad1e788df493111f6449396c90135e556546f7b4b2
MD5 73fe1a52f79904db3ab143a3f7c8ca3a
BLAKE2b-256 3d19d28aa715a2d960f0efc95663660f74f21be11c8cf2f22ef65041b08705ed

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.2.dev202306031685623169-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.2.dev202306031685623169-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 6ae8ad07b62508e05118ee1463180962a9af4fc23c70d87223ee97e348285bc0
MD5 d58ac42fb3327da29ef00ad8431c95f8
BLAKE2b-256 6f5cc0fae31ae22e71b19b5aa91b37632894816d62d47cac212561f5a869de0d

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.2.dev202306031685623169-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.2.dev202306031685623169-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 3ee88e327f5df9e83d9049ba406529027f736703a9e97b22fd27bbef7390a1a3
MD5 b7a508b06c76510946d834f6cebaf9cf
BLAKE2b-256 6b6051d93d588bba142da85ffbb8f18c49a3e2b50ae39817afbe749fd15ef757

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.2.dev202306031685623169-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.2.dev202306031685623169-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 6a7b8fcc88b81e325f6c513d80d7a2c97d08c270d8f588b8962bfb1f7ab73f82
MD5 2c939afc8b4be0f78e50241b2a7a41f7
BLAKE2b-256 53687c279280f11f54e6808f0a2cca036f3f6a314f9f4ec1be10d4e73bc07817

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.2.dev202306031685623169-cp38-cp38-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.2.dev202306031685623169-cp38-cp38-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 cb4029226c3c81bf006647ca3768984ac709a3621d02e6ff1a7839a662723f93
MD5 b452d9ae2c5863422c9c0553d729c5a8
BLAKE2b-256 bbe1cfc9bdf81608778cd56f111ea62ee7b244aba277fc1a4caeb9848454a4bb

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.2.dev202306031685623169-cp38-cp38-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.2.dev202306031685623169-cp38-cp38-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 0380ade5a4ddcc40492b147b51ed72ce575edf5b19789b821a8c0a4f18ac47eb
MD5 4001f58779e36d3b42b2e535c18e6c5a
BLAKE2b-256 664f7ba7bef3137697e35954f279ba6a9747d35795a46399d6804d6feefd42c8

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.2.dev202306031685623169-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.2.dev202306031685623169-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 0786b852119dbe8061d97465ffadb8915002bf11b001a73393bf1cc9b5734348
MD5 eabf737c6666a7f1c7da5d7b9474478b
BLAKE2b-256 1a5d65739ea903a98e33c92c6be9f7e8b9cdf5e38b683758ee554def0fb94c4f

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.2.dev202306031685623169-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.2.dev202306031685623169-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 bb66288b5799ccc47d4b6d64d0ebc6c62b4a6f05f376ca2877569ebae9c32beb
MD5 f8820a18ae337a1a1e800b766a24779f
BLAKE2b-256 48e2e81c3abc06745e8d4cc4bba7df2c05272a738425eae396aa9d6c4323ee69

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page