Skip to main content

Bayesian networks and other Probabilistic Graphical Models.

Project description

Description: pyAgrum is a scientific C++ and Python library dedicated to Bayesian Networks and other Probabilistic Graphical Models. It provides a high-level interface to the part of the C++ aGrUM library allowing to create, model, learn, use, calculate with and embed Bayesian Networks and other graphical models. Some specific (python and C++) codes are added in order to simplify and extend the aGrUM API. The module is mainly generated by the SWIG interface generator.

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

pyAgrum_nightly-1.8.3.9.dev202306131686550512-cp311-cp311-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.11 Windows x86-64

pyAgrum_nightly-1.8.3.9.dev202306131686550512-cp311-cp311-macosx_11_0_arm64.whl (3.8 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

pyAgrum_nightly-1.8.3.9.dev202306131686550512-cp311-cp311-macosx_10_9_x86_64.whl (4.3 MB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

pyAgrum_nightly-1.8.3.9.dev202306131686550512-cp310-cp310-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.10 Windows x86-64

pyAgrum_nightly-1.8.3.9.dev202306131686550512-cp310-cp310-macosx_11_0_arm64.whl (3.8 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

pyAgrum_nightly-1.8.3.9.dev202306131686550512-cp310-cp310-macosx_10_9_x86_64.whl (4.3 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

pyAgrum_nightly-1.8.3.9.dev202306131686550512-cp39-cp39-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.9 Windows x86-64

pyAgrum_nightly-1.8.3.9.dev202306131686550512-cp39-cp39-macosx_11_0_arm64.whl (3.8 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

pyAgrum_nightly-1.8.3.9.dev202306131686550512-cp39-cp39-macosx_10_9_x86_64.whl (4.3 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

pyAgrum_nightly-1.8.3.9.dev202306131686550512-cp38-cp38-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.8 Windows x86-64

pyAgrum_nightly-1.8.3.9.dev202306131686550512-cp38-cp38-macosx_11_0_arm64.whl (3.8 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

pyAgrum_nightly-1.8.3.9.dev202306131686550512-cp38-cp38-macosx_10_9_x86_64.whl (4.3 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

File details

Details for the file pyAgrum_nightly-1.8.3.9.dev202306131686550512-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.3.9.dev202306131686550512-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 3c999c7a58d31230e53bf76b4a08f352907dee41d11bb2a668da67aab362b039
MD5 ebfc6663545cf12f0efaa2837ee58cc1
BLAKE2b-256 57816c2715da6759530b6f74ccd00d2c079de117629eacc409751076d63ff522

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.3.9.dev202306131686550512-cp311-cp311-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.3.9.dev202306131686550512-cp311-cp311-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 fdee3e7676ede3f95dadc7d7685079eb48716d6bda5aece3a149cbf7da82c7a2
MD5 87b58b693eb2a7c543397689cdcec6d4
BLAKE2b-256 56aad4189c8458245a018fe88e61d5c8a4f9637c51f53105518e1ce1b7b123eb

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.3.9.dev202306131686550512-cp311-cp311-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.3.9.dev202306131686550512-cp311-cp311-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 bfbb5d9f6fad0efb1e1b2899b347473d54de178ed8a41132798d0576bee08a9c
MD5 0d327807987b526cba98152d449d7f36
BLAKE2b-256 64ab1c45fd0b8af645d1a20045dbdfbe5c6ce37d4d92fcb8c06dcb68af33e27b

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.3.9.dev202306131686550512-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.3.9.dev202306131686550512-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 13cca918d7c763d5d0b6c1795e5861f37fbb70c6854240f29e8c6894484f089f
MD5 9c66b1a8ec4b497f8f9bc90c1919b6a1
BLAKE2b-256 a9818ebc7b4c554d06b994e4ec6b360d546e22ef3b633ad46a451a985a3c9540

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.3.9.dev202306131686550512-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.3.9.dev202306131686550512-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 2558cca302b4c33694d57d63a112839db8f220cbfe7742407b929b424d296cdb
MD5 f8de451ed5299551805ff5cceb438232
BLAKE2b-256 bfcbd0f69f0a43d638b052e1394ab1da3a54f8c849996817bee2493fcfc6263d

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.3.9.dev202306131686550512-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.3.9.dev202306131686550512-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 afd12c045f1dcda821e4d11b791f80de071cf2b0455754afbc14dfcc29b33b68
MD5 5a23c64b57a51d671892e000418c5aa0
BLAKE2b-256 cbce47e1639191daf3f77ab424ad50dbf5337e1896b6d40fbdc99e73d8f1f3a5

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.3.9.dev202306131686550512-cp310-cp310-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.3.9.dev202306131686550512-cp310-cp310-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 2aa77a200c32f10f2cf594ede3d42a81b137fd7c27f63da5eefe86b763421a09
MD5 a2197c5b6baa8ed8a8b145d43e4436b7
BLAKE2b-256 4ff763a24bd5e9e98a3f03bfa2d9f9257814f5409020d9a0b20f626de047beab

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.3.9.dev202306131686550512-cp310-cp310-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.3.9.dev202306131686550512-cp310-cp310-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 647e76ef04881eae9cb83767ad7bf973ea5e526fabfb0775aa56541d420434b3
MD5 1ae91b1f81f3512c5f4b05737912b2be
BLAKE2b-256 540d2334588229094401f1c2f9b8e576b8295b02eb0798f433d6a67d6a074fb2

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.3.9.dev202306131686550512-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.3.9.dev202306131686550512-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 ccc5108be153b700118ad8338752645dd0ce381d1d8302aec0a715dfdea978c3
MD5 2a64309fb275796d8f2c1be351c9da40
BLAKE2b-256 d8b2653713c1766ee4d23427ebdb8f52e97bf8657e57d608e4279964542cd0f7

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.3.9.dev202306131686550512-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.3.9.dev202306131686550512-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 7b6ce9300bdaa0d981dea3b5c4cfffa5047997530caa6e63792bdebd00f7c6f2
MD5 e7fb5685fdd29229d170a01e069702eb
BLAKE2b-256 6dbc22bb347ea1d31a3f7891d34b7cd66aff68285c06708b31a2feb3c4c323a4

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.3.9.dev202306131686550512-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.3.9.dev202306131686550512-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 edb102d7c65e6c1a9898bb1a4c5f8ff4df6be2111ebf5ca93bbcde2d17a2b490
MD5 d2ddbcd032efaf4ca0918a694f9c9658
BLAKE2b-256 53625e6cc6db9dc6b24ea11812c4751350ab97efa0674b77964ae668ebf63592

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.3.9.dev202306131686550512-cp39-cp39-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.3.9.dev202306131686550512-cp39-cp39-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 8aa41d087547bf6b0372043b3e869f7cbfbebde58134abb36e4c255309d4d236
MD5 af96c18ac3fdf37cb82d195b97477217
BLAKE2b-256 8331bb13de5f48906c87677da1b7e22616905800b56157d497516e15ead9d9ef

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.3.9.dev202306131686550512-cp39-cp39-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.3.9.dev202306131686550512-cp39-cp39-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 b84f840f7e1455c8f70f0bd91689298bc872aef5424173e86c3a448b61ba186a
MD5 ca339c894aae9c21687856d331b8e4d7
BLAKE2b-256 103d85bc3750a8cd5ca9f9edef2b293bd7c90520136c9fe0c0314554d5c6e4f0

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.3.9.dev202306131686550512-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.3.9.dev202306131686550512-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 3abde20cfa74f9f9f9473edd7393ea61d9209b1bf24032aee8641a4f3b124e00
MD5 d01663105faeb49ac84dfcfda6a0e09c
BLAKE2b-256 b11898a439a70152d9fa9a2e73af3a0ba9523e6db575098019f1b2bd8f593a74

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.3.9.dev202306131686550512-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.3.9.dev202306131686550512-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 182809aaab8de058fe1361c35c377a9b15f2aef9aee0c43f491c9befded80431
MD5 91061be11074f1c6c00f4ee7aef50d29
BLAKE2b-256 679ccc0ff843e432059b5f9ae357bb952b43255e63abbf81458b321e5e4c502a

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.3.9.dev202306131686550512-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.3.9.dev202306131686550512-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 b94f67ecde5f0091f93e506492bc0ef2b25a3d01ad32ee22448c9ec3079c147b
MD5 482eb632b6d61622f0f5f6fc31c0e31a
BLAKE2b-256 e4dd19563c1de5e9e1e92455204ddda80091642e5bc23275d444349210f978f4

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.3.9.dev202306131686550512-cp38-cp38-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.3.9.dev202306131686550512-cp38-cp38-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 14cd6079ac7455bb54d58e319be91a1ce21686ffda84f4dc257fa85d0638802f
MD5 1d4fdb4845e9de5ffef33c88fb7facc2
BLAKE2b-256 0aaeaa4aa972bca9e54825db4b3f9c830ff7ba51a912b1918d16fcf45377bb0b

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.3.9.dev202306131686550512-cp38-cp38-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.3.9.dev202306131686550512-cp38-cp38-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 0f4fcffd12305ad83ddd2903c0be984b7d956b78e75f33faae215b19a2bfb9b8
MD5 84febac12bcbca8c5a1ebf63b1d3b93e
BLAKE2b-256 2f548b6c7bfd7a7ab8ba7d6fca24c58aade9e50f53d4d8823de2943cf564fb95

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.3.9.dev202306131686550512-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.3.9.dev202306131686550512-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 0072194bbc21a45a5d1f89dbadc8d966f405d1c1addbb09b02b4847b76727a72
MD5 353ce3038f9f058cedd517b3efda43b2
BLAKE2b-256 e1467bf0ed51fbd844fe4151b108a63762ad6e2dd73053689b0f735232370944

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.3.9.dev202306131686550512-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.3.9.dev202306131686550512-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 1ef396d12c3ad6a579bd7f5e857d6eb66887277946f004eb52c045f7718096fc
MD5 5ad77f853ae0c5a463673d8d6a5a14ff
BLAKE2b-256 6665f779ac49db8e20752f67ef57c08f7169d21116ac5898552bb859f748c149

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page