Skip to main content

Bayesian networks and other Probabilistic Graphical Models.

Project description

Description: pyAgrum is a scientific C++ and Python library dedicated to Bayesian Networks and other Probabilistic Graphical Models. It provides a high-level interface to the part of the C++ aGrUM library allowing to create, model, learn, use, calculate with and embed Bayesian Networks and other graphical models. Some specific (python and C++) codes are added in order to simplify and extend the aGrUM API. The module is mainly generated by the SWIG interface generator.

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

pyAgrum_nightly-1.8.3.9.dev202306141686550512-cp311-cp311-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.11 Windows x86-64

pyAgrum_nightly-1.8.3.9.dev202306141686550512-cp311-cp311-macosx_11_0_arm64.whl (3.8 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

pyAgrum_nightly-1.8.3.9.dev202306141686550512-cp311-cp311-macosx_10_9_x86_64.whl (4.3 MB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

pyAgrum_nightly-1.8.3.9.dev202306141686550512-cp310-cp310-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.10 Windows x86-64

pyAgrum_nightly-1.8.3.9.dev202306141686550512-cp310-cp310-macosx_11_0_arm64.whl (3.8 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

pyAgrum_nightly-1.8.3.9.dev202306141686550512-cp310-cp310-macosx_10_9_x86_64.whl (4.3 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

pyAgrum_nightly-1.8.3.9.dev202306141686550512-cp39-cp39-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.9 Windows x86-64

pyAgrum_nightly-1.8.3.9.dev202306141686550512-cp39-cp39-macosx_11_0_arm64.whl (3.8 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

pyAgrum_nightly-1.8.3.9.dev202306141686550512-cp39-cp39-macosx_10_9_x86_64.whl (4.3 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

pyAgrum_nightly-1.8.3.9.dev202306141686550512-cp38-cp38-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.8 Windows x86-64

pyAgrum_nightly-1.8.3.9.dev202306141686550512-cp38-cp38-macosx_11_0_arm64.whl (3.8 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

pyAgrum_nightly-1.8.3.9.dev202306141686550512-cp38-cp38-macosx_10_9_x86_64.whl (4.3 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

File details

Details for the file pyAgrum_nightly-1.8.3.9.dev202306141686550512-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.3.9.dev202306141686550512-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 558c0ffe7dca31d641e3239c50931deb26f83153941b1e2ba7e9d2fa4abdd4dc
MD5 217bf8efcd76411032489fb06ffb59e1
BLAKE2b-256 154750afdacce45e31109120b92a6a932eef190fca3eb555b6909b6553602667

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.3.9.dev202306141686550512-cp311-cp311-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.3.9.dev202306141686550512-cp311-cp311-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 5bb5fe868982555c39f32c13fbab5e0d4b30edaac4d58447227b6a36a902c4bb
MD5 066ec0a16e7ca6fd809013960a2c9eb8
BLAKE2b-256 abd11d0da9199f14c076dc062bcb572e7df62641dbbfbc824b3758749bcda279

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.3.9.dev202306141686550512-cp311-cp311-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.3.9.dev202306141686550512-cp311-cp311-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 3686e2fedf1f1b16d627f8d71647129df55b9a934e1bce4688fb99c1ff4a8481
MD5 7ad24f347e5a4e4a34af52f469be8dc7
BLAKE2b-256 2c2a798d01f97c8c1756f45a576e46f95b4bfb267b863a8a66014a89a4fe8650

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.3.9.dev202306141686550512-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.3.9.dev202306141686550512-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 7a92445ce4fdc3ced94cfc0cfd456e607ab783b4275476352d6f7c3e9bd70cbb
MD5 650b06f0bfa360306d078ab44fd54441
BLAKE2b-256 259073d86d04dc09c6b912fff0a41ccad7aafab8374807800959ac659ff44330

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.3.9.dev202306141686550512-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.3.9.dev202306141686550512-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 b35800104572bcd39e586f67b89013b0a818e56d28d1e182e3ec59b45301f7f2
MD5 f3e5188344786619a1ef0666919abd18
BLAKE2b-256 cd72e0a40434d8163ac20d3d0e602606e1cbd5b603b7fc591d94eea324c97944

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.3.9.dev202306141686550512-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.3.9.dev202306141686550512-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 9ccacb4d919b815a91d2a7cb7b14db19e9e93febf1f32c7f62b75dc1517aeca0
MD5 0e6ac48ecf3b899ddf8d0b9ba5d4b456
BLAKE2b-256 ad4fff58e9dc5528b96a3f60de546cd0abac84749de245c6459452b19c943c88

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.3.9.dev202306141686550512-cp310-cp310-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.3.9.dev202306141686550512-cp310-cp310-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 07c56009c7ad737c9414ed667a93716af4287783c2c56695458ba8ffefbdefb5
MD5 4131280f0fa12869f2303e42176a7d4b
BLAKE2b-256 9c2b46eb51380dd8bdf220e8b011fc62c5e97e747b8ef8504c6ad02f62471bdc

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.3.9.dev202306141686550512-cp310-cp310-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.3.9.dev202306141686550512-cp310-cp310-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 8cee853a1f8159f57ac6c4dea11051400d9641f267e2db152651daf9a47282fb
MD5 61b828b0bed6e87a9f0dee5a84fd1642
BLAKE2b-256 4a7c4fc54fdb379986fc27d2c58e858cc1dd0ee05a4a03acc3438f8281d70975

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.3.9.dev202306141686550512-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.3.9.dev202306141686550512-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 1c5a18b142c459b2da4c6573d99d9ef42eb1e77c7c2aae4a7b3db25eaf472410
MD5 6f3570b4e91a8ece46b19c4734200627
BLAKE2b-256 7f1f90b1d7e850480b5b1076e2428ed7bd17c97cd1564db25c286f1a0e1bc464

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.3.9.dev202306141686550512-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.3.9.dev202306141686550512-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 75063b928fd42fcc0cd6cd28b3b44d0f5db2bb770047649696aebf892d662225
MD5 e28750b981f6984e0332de7ed56ada53
BLAKE2b-256 8bf06ad59aa97777663108a1e5b1198ac4b904df5c5ca47af9292a22dc50df56

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.3.9.dev202306141686550512-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.3.9.dev202306141686550512-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 6238c081bbd5a7a0ff46e3b05974cd2af0ce207b2463d2886d77efc31d052c17
MD5 ac6164661757c15fe8a51bbffd6da1fb
BLAKE2b-256 c41c615bdd021d63187c43ea30e3da1038d3de5dd7e602b691ac53499610f596

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.3.9.dev202306141686550512-cp39-cp39-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.3.9.dev202306141686550512-cp39-cp39-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 136f2d38ae1bb52b31b3490cad7e9b0e8e31726954bd5172c54af771ea2a593b
MD5 8c2b186ce9420fdc46da8302c6308451
BLAKE2b-256 67e229ab5405da3ff92919f57192ca3d13dfba1a2ccba86572c10ebcbcca0220

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.3.9.dev202306141686550512-cp39-cp39-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.3.9.dev202306141686550512-cp39-cp39-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 df1d93001c0788f5c3e7e55648823925dd9624625cd89e7629be26ffdcfa3712
MD5 8a027b4825d02715765512eecac3b7ed
BLAKE2b-256 4ae6ae22d94a37229c26c2a265778f98c3a1e127a44934b142fb2845592db099

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.3.9.dev202306141686550512-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.3.9.dev202306141686550512-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 e89e2c846e5f45c1f619d34812b29e370215b69a71cc3d140b0b86cf62551985
MD5 53bb067dccbce04dcde0fbf3e7975126
BLAKE2b-256 14dce217798630038d118d291f148e21a19c445c5b4382b6f6be51b811b8b30d

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.3.9.dev202306141686550512-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.3.9.dev202306141686550512-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 d0d027c3e2d63ed6bc9b866aff97a62db2dcbe08d6cd4eb5f586bc46ff659481
MD5 b4f29c41f074823002668d1d6f20724d
BLAKE2b-256 bbc7750faab2a46547820c8f88cb4bebaa0f9e9f14e0a8c6e3566fb7fc365081

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.3.9.dev202306141686550512-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.3.9.dev202306141686550512-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 71c1293a62e981dd0c6963891af1dd342a26c0acb0944bb5a02c1781def20bc5
MD5 2699ce02535a6362da5318ad904223f1
BLAKE2b-256 192dcbe8b266d3c27d0538fdf675e5030d0f6393631a08d861a6d7accb4d90d5

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.3.9.dev202306141686550512-cp38-cp38-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.3.9.dev202306141686550512-cp38-cp38-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 cca5e1344f7c7233bf05af9f74a1742bb7fd29ae34df95ac0edf8bd50cdb50fa
MD5 7ead4c9ce038b40fe9f2db24d12a4747
BLAKE2b-256 f1cda896616572d76e0c13dcf0c5a347f815c8330f3c7cb39f72eb348cff9bd4

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.3.9.dev202306141686550512-cp38-cp38-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.3.9.dev202306141686550512-cp38-cp38-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 ba13bdc83208602d8ec066e7bd1824c733f82baf87d9d5e10c331da9aa4aaa3f
MD5 95751a8ab7bd7acddf6e7ffbc9d3c6ba
BLAKE2b-256 19c69fc1cc5eff72ac81b7c75cff2e4beeadfc0ba2b139e1832e7abac6def0ca

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.3.9.dev202306141686550512-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.3.9.dev202306141686550512-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 9bc8903ac836a2ea887e63510a123f7c5d7368c37581c21b2696ea218e778100
MD5 681c87010b517c24a03e5a93c9ccb900
BLAKE2b-256 eaff4691b53d73386408887040b01c3c4a314ad03a475af926a28b6280d15e9a

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.3.9.dev202306141686550512-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.3.9.dev202306141686550512-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 b4bbad2d1669d6b623240040cd3a44a5f6fe8fd0a912f42855ad360e80060294
MD5 391f8bedac4a368a4c7902676352b433
BLAKE2b-256 5014834951b2fc31ea302dc838849ac51f79cf4b4538802cd70c4bc7c35f98ca

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page