Skip to main content

Bayesian networks and other Probabilistic Graphical Models.

Project description

Description: pyAgrum is a scientific C++ and Python library dedicated to Bayesian Networks and other Probabilistic Graphical Models. It provides a high-level interface to the part of the C++ aGrUM library allowing to create, model, learn, use, calculate with and embed Bayesian Networks and other graphical models. Some specific (python and C++) codes are added in order to simplify and extend the aGrUM API. The module is mainly generated by the SWIG interface generator.

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

pyAgrum_nightly-1.8.3.9.dev202306221687071476-cp311-cp311-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.11 Windows x86-64

pyAgrum_nightly-1.8.3.9.dev202306221687071476-cp311-cp311-macosx_11_0_arm64.whl (3.8 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

pyAgrum_nightly-1.8.3.9.dev202306221687071476-cp311-cp311-macosx_10_9_x86_64.whl (4.3 MB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

pyAgrum_nightly-1.8.3.9.dev202306221687071476-cp310-cp310-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.10 Windows x86-64

pyAgrum_nightly-1.8.3.9.dev202306221687071476-cp310-cp310-macosx_11_0_arm64.whl (3.8 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

pyAgrum_nightly-1.8.3.9.dev202306221687071476-cp310-cp310-macosx_10_9_x86_64.whl (4.3 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

pyAgrum_nightly-1.8.3.9.dev202306221687071476-cp39-cp39-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.9 Windows x86-64

pyAgrum_nightly-1.8.3.9.dev202306221687071476-cp39-cp39-macosx_11_0_arm64.whl (3.8 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

pyAgrum_nightly-1.8.3.9.dev202306221687071476-cp39-cp39-macosx_10_9_x86_64.whl (4.3 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

pyAgrum_nightly-1.8.3.9.dev202306221687071476-cp38-cp38-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.8 Windows x86-64

pyAgrum_nightly-1.8.3.9.dev202306221687071476-cp38-cp38-macosx_11_0_arm64.whl (3.8 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

pyAgrum_nightly-1.8.3.9.dev202306221687071476-cp38-cp38-macosx_10_9_x86_64.whl (4.3 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

File details

Details for the file pyAgrum_nightly-1.8.3.9.dev202306221687071476-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.3.9.dev202306221687071476-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 8d972af25a52a792027cdbfa7549f949ff200732ec0992022a5a8ea3e1d1a2fc
MD5 4f4ed781d77c64ae1afc285e6c07889e
BLAKE2b-256 3e6eb3588db81986bf4320b17b27e36e1bccee09d21cc15267d6f85d7fa07a8f

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.3.9.dev202306221687071476-cp311-cp311-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.3.9.dev202306221687071476-cp311-cp311-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 7c9dc14f82a42abfc57003ac32a195bbc7d7896beaea4d14118c2d21470d414b
MD5 2cd6c723cbbfc293506541716dec7d3b
BLAKE2b-256 f7f4d22b4340cfdbd6d682365cb57a8418d661a8a4021e703790d230b7c7bf17

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.3.9.dev202306221687071476-cp311-cp311-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.3.9.dev202306221687071476-cp311-cp311-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 49d08c89e8af892875a37d9efe402356eeb7d78ad4a9c15fb5e175e362e2c39c
MD5 381b84d7eec8b4380c956db56327f547
BLAKE2b-256 cc5980f6660dca0fd0ba2be5bc8bdbd915389c1c747a09e1ca78953c029d11d5

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.3.9.dev202306221687071476-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.3.9.dev202306221687071476-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 9fc81fbd56e4629b97b638041a4bae71c2d08ae52c6181a1be0e6e7e4034d505
MD5 bb8084571015c3ef4fbf9d54cbfb5985
BLAKE2b-256 31520d233e202212d5d487f9ab2edfa25234a3e1ea594fe2076e6821310a7855

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.3.9.dev202306221687071476-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.3.9.dev202306221687071476-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 b4d1f1db202a0434f6fd0b102817ee0357fade308d188e0362651832b559c9e9
MD5 d2797fd51b6d653730ed7a6103da4435
BLAKE2b-256 81d3e2528eb4d2d2c23f18cb932c878e781ee718e361c4f8403a22bbabebc60c

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.3.9.dev202306221687071476-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.3.9.dev202306221687071476-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 c63cd0503e75edab250e70cf707ddc947e30839c6c9f1b4280c8b2703ee3f6d5
MD5 0e1d55351effedea57c157003c9b1fec
BLAKE2b-256 fb02b2b40754ba06d79072e3d6ac93cc46d9bafe9ac0716e396133719f95ae20

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.3.9.dev202306221687071476-cp310-cp310-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.3.9.dev202306221687071476-cp310-cp310-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 5f299042774079ac13457ece6f4f30eca9aec90152d96163924b9056b86be480
MD5 5b7196404c143bac28cfa4e615972977
BLAKE2b-256 425df6e7b48763cb7550b859dc0a54106d06dd92c6da372f357b7b4f16ba3604

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.3.9.dev202306221687071476-cp310-cp310-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.3.9.dev202306221687071476-cp310-cp310-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 0c0e626b0f10b52cabe7658b63fef160f4a0fc4cee3968600f42a6d2892ff69a
MD5 d60cd925b3fea7bcea0268fba0602275
BLAKE2b-256 b2f8acb78677bea41b4bde3bae0d30f202458acb5be2987c1043cc87357cc904

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.3.9.dev202306221687071476-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.3.9.dev202306221687071476-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 e308e3dbcafdaa26ccd08b468ac52392f394104699cf616616c673366c583ef1
MD5 a7ed39fc8d8bbcd21d32d023b4c862c5
BLAKE2b-256 8652e0ec08f5f49a74734e6179f8bbf44662ade042b9ba44872121332e674a20

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.3.9.dev202306221687071476-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.3.9.dev202306221687071476-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 e01addbf24b94fdc4f8ed8b1d9e0777ca454736cabb9bc403fab65fc1c68dd6c
MD5 b3ff528f1bddfbe389a3363d2ecd5eca
BLAKE2b-256 52704117c68d0444e968e68d8bc06cc29d8d47d7a12c8250aa37a9af5bae0aa8

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.3.9.dev202306221687071476-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.3.9.dev202306221687071476-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 3298ece2f5b29ae1b5325ea58d277541d6e83045a6081f7e74dc6c4df1f66ad7
MD5 0ee09b7c258e5961282197ca3b343635
BLAKE2b-256 8debb9f3bb1d4d4b7fe74980609ca48b938e57c8188b501fa7b604a251762500

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.3.9.dev202306221687071476-cp39-cp39-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.3.9.dev202306221687071476-cp39-cp39-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 d3be4b08b6c79f2b248c12c71205bd4c631b11dd1892b13bfffcc3df1c945d9b
MD5 a6c143becbff502e597a6f0e4a2aaae0
BLAKE2b-256 f2fff7076facd3be7460ebee3af7e6b795fb1233acf32cc7756b8218c5dbcbba

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.3.9.dev202306221687071476-cp39-cp39-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.3.9.dev202306221687071476-cp39-cp39-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 140a9b27502fc4997c64a1e61d0c6374ca3618fe56f4bb88a5c019efc1af3376
MD5 c7b0da4e7487da845662716891efd844
BLAKE2b-256 a331273249c29741f87acc490bc5f15dfb3d2081afe5a9b78e421a2663189eb6

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.3.9.dev202306221687071476-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.3.9.dev202306221687071476-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 efe6bcb85bfc567f0b5a767506f0aa342b71e7a95d113fdf0afaefd23f857c16
MD5 821b769e5a3f2978f7ee2777adb551ba
BLAKE2b-256 e06015fd7f5024507531ee4096a37cbee360fde724613903bc90665a3260ff4f

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.3.9.dev202306221687071476-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.3.9.dev202306221687071476-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 e61b273116ba7dd74531852b9c439f9dd8e1cca29dd415a3afb8d0a2df62a445
MD5 9b437d71109a9c0dec200dfdbe51edc9
BLAKE2b-256 cb9ec3d7ae6c279f1f891ada082d5d3d30cf14a5632deed954cd8c9f42585601

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.3.9.dev202306221687071476-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.3.9.dev202306221687071476-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 c5c8ad5723f2c79e069ae3eecaf2d6c99ed702acbaa0290c0d4dd38071d61332
MD5 0eaf76e537e5e199af55c5e7c7e5b557
BLAKE2b-256 4a29955d28e0e68ecedc8f7bc1503c80b8dee9b62175882df24050a56882cd5f

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.3.9.dev202306221687071476-cp38-cp38-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.3.9.dev202306221687071476-cp38-cp38-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 25e9b05984f77860641c36471123d9a133077b8a7a4f8d55471305f0cab330a7
MD5 9175a64f214bccc7b56c8ecbc8438042
BLAKE2b-256 ff288f2d0405e8a442dbe00937c21af0077926f8138dedb0d0d7c8781af8e424

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.3.9.dev202306221687071476-cp38-cp38-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.3.9.dev202306221687071476-cp38-cp38-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 9d8d1effc38b41379ab5d3871014e7814fbbb80112baa3ec1b041feee5b7055d
MD5 0d7664ff4b2a70cdda47eca43647cdb7
BLAKE2b-256 4161e9d57bf79a14748f3250af21a516db59deefd3a13e794c344511237650c2

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.3.9.dev202306221687071476-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.3.9.dev202306221687071476-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 b44eea299af4edbb1dfa5f0e3cb0e000cb3414033365baea52be700fa432bba7
MD5 7f3bf177e522b798f46a4888b01a4201
BLAKE2b-256 dbb68b143940a77073d92292ef5b5e89fb697f3e282e024863d805b0c385999d

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.3.9.dev202306221687071476-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.3.9.dev202306221687071476-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 2d801417e63280c6bd104475d6db14ced2a0362d29e5128f19ae6f6244560b58
MD5 bcd064b0590a362a4211f1d946aaaf09
BLAKE2b-256 1d3c61f33338c8c0df7b530a2a2da2aabb94da4f7155c9a5d5ff7d9871eb0950

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page