Skip to main content

Bayesian networks and other Probabilistic Graphical Models.

Project description

Description: pyAgrum is a scientific C++ and Python library dedicated to Bayesian Networks and other Probabilistic Graphical Models. It provides a high-level interface to the part of the C++ aGrUM library allowing to create, model, learn, use, calculate with and embed Bayesian Networks and other graphical models. Some specific (python and C++) codes are added in order to simplify and extend the aGrUM API. The module is mainly generated by the SWIG interface generator.

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

pyAgrum_nightly-1.8.3.9.dev202307021687849391-cp311-cp311-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.11 Windows x86-64

pyAgrum_nightly-1.8.3.9.dev202307021687849391-cp311-cp311-macosx_11_0_arm64.whl (3.8 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

pyAgrum_nightly-1.8.3.9.dev202307021687849391-cp311-cp311-macosx_10_9_x86_64.whl (4.3 MB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

pyAgrum_nightly-1.8.3.9.dev202307021687849391-cp310-cp310-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.10 Windows x86-64

pyAgrum_nightly-1.8.3.9.dev202307021687849391-cp310-cp310-macosx_11_0_arm64.whl (3.8 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

pyAgrum_nightly-1.8.3.9.dev202307021687849391-cp310-cp310-macosx_10_9_x86_64.whl (4.3 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

pyAgrum_nightly-1.8.3.9.dev202307021687849391-cp39-cp39-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.9 Windows x86-64

pyAgrum_nightly-1.8.3.9.dev202307021687849391-cp39-cp39-macosx_11_0_arm64.whl (3.8 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

pyAgrum_nightly-1.8.3.9.dev202307021687849391-cp39-cp39-macosx_10_9_x86_64.whl (4.3 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

pyAgrum_nightly-1.8.3.9.dev202307021687849391-cp38-cp38-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.8 Windows x86-64

pyAgrum_nightly-1.8.3.9.dev202307021687849391-cp38-cp38-macosx_11_0_arm64.whl (3.8 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

pyAgrum_nightly-1.8.3.9.dev202307021687849391-cp38-cp38-macosx_10_9_x86_64.whl (4.3 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

File details

Details for the file pyAgrum_nightly-1.8.3.9.dev202307021687849391-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.3.9.dev202307021687849391-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 4b67078f854ca8e170f40faf9f6702713667eb6aef21bd5cada378c18a6cdde5
MD5 a402be922b119a08c6d191e2df7260f6
BLAKE2b-256 24e42616238a6da2e4ac3705b4e5bb22f474c5b9498be239b85847aaef17893c

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.3.9.dev202307021687849391-cp311-cp311-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.3.9.dev202307021687849391-cp311-cp311-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 ee32cfd62d5ae44a12d0dbd6f3a29e71b536634c5ad162d01f8629e8cb39a55a
MD5 7de6aa6ae068b9c57b65ede018edcb62
BLAKE2b-256 ac2ac6be00d4869750cabf94fb923109d89ce3e40b36b5f2355ddc4e6894ec7f

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.3.9.dev202307021687849391-cp311-cp311-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.3.9.dev202307021687849391-cp311-cp311-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 a0865c56842ce0a13f4cdee86c1bd2509cd0a647d08223780b938a520740dc15
MD5 b7bb939345af619e941bfe7d13fb094d
BLAKE2b-256 3ae9886ceaddb32ac2d2bddf9a531bdc965faa7d6fa853d67566df66a65048b3

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.3.9.dev202307021687849391-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.3.9.dev202307021687849391-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 a49becee000b40cec707936083ac872ab3c2122cf003f448b4973d5570187323
MD5 890286ffa62de91a4c126631076e6ea4
BLAKE2b-256 beff0affaebf226f2310cdc41a70520714f9c408fb8666014227a882ca952f70

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.3.9.dev202307021687849391-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.3.9.dev202307021687849391-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 a7df7303f45ac4745412c50d604613f23719823caffaf4a84bf5e4749696afc1
MD5 047372c1d4346d030a501a623ff541eb
BLAKE2b-256 96f3fa0b5c4560d136998c7353291bb3bf2da26897cbaaea4d052c4b56bb6f6a

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.3.9.dev202307021687849391-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.3.9.dev202307021687849391-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 0a33bf508b6915caa0c532f475c8ee9ee266d909a5b6c08d5f3345d6d5cbd748
MD5 0a729b67216ee3ba3cbe7d07d31258f5
BLAKE2b-256 2cbdc5ba589652ee14a10882dbeb9db0553b06576a2da98c21d8f6ad7369b611

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.3.9.dev202307021687849391-cp310-cp310-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.3.9.dev202307021687849391-cp310-cp310-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 7ffe5487e922d3b94c0f19ecf76b24b5b519ef613c1d526ae95fa4f6d1b5b32a
MD5 f276ea78a5e869eee3568321980123b6
BLAKE2b-256 d0f3e9d15ea9d2c68748ae2ac9a4c50dc26d00e42375c7c5b5e7dad6cb790ae9

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.3.9.dev202307021687849391-cp310-cp310-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.3.9.dev202307021687849391-cp310-cp310-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 80b55723114b3d7c741ec560c5307d03fbde1774a5b38b8f0d0ed66566051082
MD5 e8a45ea010def140ead799bd3cf9706a
BLAKE2b-256 f9e042d3c0ef0c15fe51366fcae635cd1249fdbf5111249f6303570543e04cda

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.3.9.dev202307021687849391-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.3.9.dev202307021687849391-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 8552dfbeefc08e0125ed1f036e9dc3f54502948ac4e138ededfb7200fc4a8cfb
MD5 fe32ba2493df9582ab3723c3e05630ab
BLAKE2b-256 a55d449086946ad946a298ff45776546ae80d53a41fe2692a37abfda2900755f

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.3.9.dev202307021687849391-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.3.9.dev202307021687849391-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 1df5991c274b848608fecf91844284bd356eee9f812996daf778c288a4faf60e
MD5 89521852769b22312eae7567f651c425
BLAKE2b-256 7b68bfd5eb5aa4c0ec9246b8d40d1fc7169125e80713324d11591f0388717744

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.3.9.dev202307021687849391-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.3.9.dev202307021687849391-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 d9b6db6974a7fa5c04d8c80b9c86ddb0a3b90248c0757104bf2ff74dfb6b62cd
MD5 911002b9e0039efee73736f99061cf44
BLAKE2b-256 5f0f16a22d714decdd7af6174edb7f390eed1e809a30c2721931fe39569e263e

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.3.9.dev202307021687849391-cp39-cp39-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.3.9.dev202307021687849391-cp39-cp39-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 78b9f99d1ea677d929d743025e88456e9177e7867a87be97a22c3f211d2599d2
MD5 905f242d4f5918d0314dbd0785d7acbc
BLAKE2b-256 2afbefc1c8c2d7ae5d05ab69e41b61635a2246a6f9ba4435b1b9e9f1266afeea

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.3.9.dev202307021687849391-cp39-cp39-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.3.9.dev202307021687849391-cp39-cp39-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 9ecbfa6682c1a1c00dc841d28e06add039b11cd56ac7b1c1b0cce57809e3d02f
MD5 73d8c6815279ff2c4413d2c25333ede5
BLAKE2b-256 a78ec468a9cb4eb8d8dfcec8fa1fe5d9b604d8767ffb79c62fc7b8a5c37169f3

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.3.9.dev202307021687849391-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.3.9.dev202307021687849391-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 46bdc81101ceeb39f638518fc6d70ee5efc52b10ef789b7190aae67facd55cfd
MD5 e6c7dd3cf5e67a88ff99822c0115ea6f
BLAKE2b-256 b49d5b11d34c7bbb72b823411b6fc03a1500d0e934b7ab8a6ef996a8240190ee

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.3.9.dev202307021687849391-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.3.9.dev202307021687849391-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 87f87bcf345f66863bdb0d9a6c958f836d81bedb1d8b1eb4c555603e9939cbfa
MD5 9bad333d495578bd0dd3b5e75731890b
BLAKE2b-256 066b5cbec1ce829b43c42e61d2d2b78175802d942d38de706afc59ecb0a78983

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.3.9.dev202307021687849391-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.3.9.dev202307021687849391-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 3fb95110cdd2387e3c39a6befedf2db6d538120b8fb6a9d724a7c387428e39cc
MD5 2bcf2943b5878b775f4ef9184a10ed43
BLAKE2b-256 bcd794ae24fce776aba20014c38b172a28cfea0a52471d8749c2f193c039f284

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.3.9.dev202307021687849391-cp38-cp38-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.3.9.dev202307021687849391-cp38-cp38-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 431554d21cb473cefaa44038e9ed26928788268e3d0db9c36cc26ce24605579a
MD5 6ae0fa12a7fbfbadf786e58fb69e6737
BLAKE2b-256 9d8bd0a351b8eb6272234d594d86639838f94b7b7fefeac4c78ce93d427d29ae

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.3.9.dev202307021687849391-cp38-cp38-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.3.9.dev202307021687849391-cp38-cp38-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 717228a9f4cbb92a814e45d22d73783de378651f0e880f61782fb51a00691aff
MD5 b261530904eb980a78cb4d2e71edfb02
BLAKE2b-256 ce27c5331036f69d55583d9cdb04496a08bc62663b1a5b5a9aa8802f8b24d244

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.3.9.dev202307021687849391-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.3.9.dev202307021687849391-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 58caaf6428f2c43968ccca5b9d44859fe1761c17de5e9f2e1f9a0ba987f672a5
MD5 9950c53f356993a9b02ce047067b71b8
BLAKE2b-256 42f425037122acf0d72bce93401e13452d6c3819b6a61835972fe0ed3a70eeca

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.3.9.dev202307021687849391-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.3.9.dev202307021687849391-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 d33a19a385fad1af16e0b81c7159ac977320312c90777bb138d43cea155f923b
MD5 4a262c5e552aa432de1fc31806d90eb4
BLAKE2b-256 45b34bf334e42d85a2f5690f35eac4bf9974a2a58abe2212afbf8ff7af424f41

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page