Skip to main content

Bayesian networks and other Probabilistic Graphical Models.

Project description

Description: pyAgrum is a scientific C++ and Python library dedicated to Bayesian Networks and other Probabilistic Graphical Models. It provides a high-level interface to the part of the C++ aGrUM library allowing to create, model, learn, use, calculate with and embed Bayesian Networks and other graphical models. Some specific (python and C++) codes are added in order to simplify and extend the aGrUM API. The module is mainly generated by the SWIG interface generator.

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

pyAgrum_nightly-1.8.3.9.dev202307051687849391-cp311-cp311-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.11 Windows x86-64

pyAgrum_nightly-1.8.3.9.dev202307051687849391-cp311-cp311-macosx_11_0_arm64.whl (3.8 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

pyAgrum_nightly-1.8.3.9.dev202307051687849391-cp311-cp311-macosx_10_9_x86_64.whl (4.3 MB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

pyAgrum_nightly-1.8.3.9.dev202307051687849391-cp310-cp310-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.10 Windows x86-64

pyAgrum_nightly-1.8.3.9.dev202307051687849391-cp310-cp310-macosx_11_0_arm64.whl (3.8 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

pyAgrum_nightly-1.8.3.9.dev202307051687849391-cp310-cp310-macosx_10_9_x86_64.whl (4.3 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

pyAgrum_nightly-1.8.3.9.dev202307051687849391-cp39-cp39-macosx_11_0_arm64.whl (3.8 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

pyAgrum_nightly-1.8.3.9.dev202307051687849391-cp39-cp39-macosx_10_9_x86_64.whl (4.3 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

pyAgrum_nightly-1.8.3.9.dev202307051687849391-cp38-cp38-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.8 Windows x86-64

pyAgrum_nightly-1.8.3.9.dev202307051687849391-cp38-cp38-macosx_11_0_arm64.whl (3.8 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

pyAgrum_nightly-1.8.3.9.dev202307051687849391-cp38-cp38-macosx_10_9_x86_64.whl (4.3 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

File details

Details for the file pyAgrum_nightly-1.8.3.9.dev202307051687849391-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.3.9.dev202307051687849391-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 e26cd37880b39dd593eef190d8bb197ae7a9785eb1fe2d12664f0ac0cafa8287
MD5 a4d5dfff1454e437368b838ca35fe105
BLAKE2b-256 b4fa170c9fceab1239f530eba59b7bb0aed0a7545c5e69484a51818a99b7d0d5

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.3.9.dev202307051687849391-cp311-cp311-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.3.9.dev202307051687849391-cp311-cp311-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 41ad3b71dd53d04814e6540049700f0ccfd3f22ddc9fd3e2a0e023090131d62f
MD5 c2d3d9f8e85a16c234e285d85dc538cd
BLAKE2b-256 4fb7a1c5b250656c9abff25b8d54cb4c05db129036c1178be74d16cd429ff32d

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.3.9.dev202307051687849391-cp311-cp311-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.3.9.dev202307051687849391-cp311-cp311-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 543fc7c759e73a359039c80a686f5365bd2dd27c99e9a7f131cffb0aa98c9387
MD5 175dcd8ead10abf70a35948d5834499e
BLAKE2b-256 b367a00665cf911991c4846a47faccd97434e804c72011f78ebea82838240250

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.3.9.dev202307051687849391-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.3.9.dev202307051687849391-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 371c0c0c7903515d8c115029a9f85939554388d3f813626692248d558b1a0088
MD5 fef0bc8d1aa33a0ac29b7a55d43728c0
BLAKE2b-256 ca615f1021d26e84bd3a8139d88d07054b39e622caa17a2832b8d55a091b8259

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.3.9.dev202307051687849391-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.3.9.dev202307051687849391-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 8bd1712f1330b9d02fb571bc63a6e82ad8bad598dab4217a7df2144489dc4a9b
MD5 a9e8831e44f6be665a4b5de621180b5f
BLAKE2b-256 f9b1a5db87f5310ab59820236bb4df13d3bc3848fa86be322fd8e49358040524

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.3.9.dev202307051687849391-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.3.9.dev202307051687849391-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 1768c1b76e1334a58edfded2182174c3911fbf899cea4703285ab5a6b6ba3d0c
MD5 5f099febda13b45b8abb20bdc7872a60
BLAKE2b-256 ede3b739deefdec9b8b9d43bebdb915b02562c38c07fdc63f0841e82e920a17b

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.3.9.dev202307051687849391-cp310-cp310-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.3.9.dev202307051687849391-cp310-cp310-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 1a671cbe17aa4c5869c8512f8c5528f84485c226409aa1aa1b2946c78d41d9b5
MD5 2a2783afc7348fd6772be29f8b63ce76
BLAKE2b-256 6dc324b64c3738b272ea7ff65a293292eed5820a60826cf9a9893a8ccfe51a5f

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.3.9.dev202307051687849391-cp310-cp310-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.3.9.dev202307051687849391-cp310-cp310-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 be3bbf89a4d18a0957a9b5fd2aa9c363560649f1c454c3d0d25b942ab73b0a96
MD5 9e2173eabbbd8507379de03c2c25a788
BLAKE2b-256 3d0fd45456f8c07c723543f98a3ef4ed123ade0db52fc3189e02fbdd1524a9b5

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.3.9.dev202307051687849391-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.3.9.dev202307051687849391-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 dc1319b1c283c86038962f79d3f3b80d486c161bdc9dbbcc2e70d1c697ff55cb
MD5 af02b945f737f3b5d9960b0e207567a1
BLAKE2b-256 678c178ee00b36260df4289c7ff63c8e32780f879cff55019590d36424e825b7

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.3.9.dev202307051687849391-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.3.9.dev202307051687849391-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 aa841a6f4c943dae57752b336064f14f6e02297750deeb1c5aa00b39321d40bc
MD5 879683591a153c73fc71eb064b7168fc
BLAKE2b-256 18882ee3bacb3563a67fe8d645617478a23b3b02acea94e98afa68d66f24e01c

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.3.9.dev202307051687849391-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.3.9.dev202307051687849391-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 4d34687db1183b6a08c77fc9cdf4c2b656733e97268c29d537ceaace9aa01b23
MD5 93b64926d89c7a556c2aa0d3ee534462
BLAKE2b-256 27af55fba758f2b7b6c6d52a00fadd463323ce39d4a3aa98c9306600eb23e684

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.3.9.dev202307051687849391-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.3.9.dev202307051687849391-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 6c4dbd6c086e41423f573736db9f7a63262b4bbcdde7f0dbf35ce51d70d4bc1c
MD5 84991c4ef618aadee9ee163bd6e117f3
BLAKE2b-256 cbd38ab54b56741dd0ed02a4cebe54bd9908f78acb68e1db395976db08297667

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.3.9.dev202307051687849391-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.3.9.dev202307051687849391-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 fe658b8206a5218dbe862f9939fbf199b1b1c3556b8d0540bbafc073ba807bd9
MD5 e6a96e7f9fd2c0d53d422c13eb89bafd
BLAKE2b-256 b0dac40601824020cc9be90e561e758e93beef1c14b58cd8f4a98b48a11c59b0

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.3.9.dev202307051687849391-cp38-cp38-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.3.9.dev202307051687849391-cp38-cp38-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 03c376c4745443346dc08177909c64fa9231ccb5efcd4efc926cf5ebc64e1d73
MD5 a6fff20bf5fea9f4ff5c4835dea5b666
BLAKE2b-256 ce3f5949201741b942a65ccdbea8b8b706bd40587adf49ea9009c7b23e98c34d

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.3.9.dev202307051687849391-cp38-cp38-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.3.9.dev202307051687849391-cp38-cp38-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 d0f381450c940b4bad1f11c9fbe6bc927af3f2ae6a68f2ccc4e97be6f33e6684
MD5 e57f2776a1a65c9c6fa4192680997ba6
BLAKE2b-256 630e4dec26b5fa6e91d6532a17bff06aee27f3b35708d3945d707192354bad85

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.3.9.dev202307051687849391-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.3.9.dev202307051687849391-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 a08ca485718706a0e2ea3ec9835b85b9dfd757a9e2a4549de3a401503242a3e5
MD5 b5125e15a9d2641ad1f7cef28d7699b8
BLAKE2b-256 a79b390541ea3c026be653c1810b04a54bab45e96e0fc2281800ec3dd2172a6e

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.3.9.dev202307051687849391-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.3.9.dev202307051687849391-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 22b9f092f40a03dedfd4014663fb0c1ad52e4425cf8a734f70bb3e0a9043831f
MD5 4a5a142f0eb472edc5bf7a6004359da2
BLAKE2b-256 035bff95275880603825ebdaa1fadfbb7cd8d618044a7c650fde59f98c3c07cf

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page