Skip to main content

Bayesian networks and other Probabilistic Graphical Models.

Project description

Description: pyAgrum is a scientific C++ and Python library dedicated to Bayesian Networks and other Probabilistic Graphical Models. It provides a high-level interface to the part of the C++ aGrUM library allowing to create, model, learn, use, calculate with and embed Bayesian Networks and other graphical models. Some specific (python and C++) codes are added in order to simplify and extend the aGrUM API. The module is mainly generated by the SWIG interface generator.

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

pyAgrum_nightly-1.8.3.9.dev202307121689076583-cp311-cp311-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.11 Windows x86-64

pyAgrum_nightly-1.8.3.9.dev202307121689076583-cp311-cp311-macosx_11_0_arm64.whl (3.8 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

pyAgrum_nightly-1.8.3.9.dev202307121689076583-cp311-cp311-macosx_10_9_x86_64.whl (4.3 MB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

pyAgrum_nightly-1.8.3.9.dev202307121689076583-cp310-cp310-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.10 Windows x86-64

pyAgrum_nightly-1.8.3.9.dev202307121689076583-cp310-cp310-macosx_11_0_arm64.whl (3.8 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

pyAgrum_nightly-1.8.3.9.dev202307121689076583-cp310-cp310-macosx_10_9_x86_64.whl (4.3 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

pyAgrum_nightly-1.8.3.9.dev202307121689076583-cp39-cp39-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.9 Windows x86-64

pyAgrum_nightly-1.8.3.9.dev202307121689076583-cp39-cp39-macosx_11_0_arm64.whl (3.8 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

pyAgrum_nightly-1.8.3.9.dev202307121689076583-cp39-cp39-macosx_10_9_x86_64.whl (4.3 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

pyAgrum_nightly-1.8.3.9.dev202307121689076583-cp38-cp38-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.8 Windows x86-64

pyAgrum_nightly-1.8.3.9.dev202307121689076583-cp38-cp38-macosx_11_0_arm64.whl (3.8 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

pyAgrum_nightly-1.8.3.9.dev202307121689076583-cp38-cp38-macosx_10_9_x86_64.whl (4.3 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

File details

Details for the file pyAgrum_nightly-1.8.3.9.dev202307121689076583-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.3.9.dev202307121689076583-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 fe352be229cc2cb5acfdb6f536424cde0918dc142e472df21b5ad8fbbcb82816
MD5 65bd0248ff3d5b8a486195f7ff80da18
BLAKE2b-256 5989e3fdbd587e90eddeadb333fac204537e2a273730d383780126e9bdbdabba

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.3.9.dev202307121689076583-cp311-cp311-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.3.9.dev202307121689076583-cp311-cp311-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 b3e33bf9d4e47094defb9821490d0442e9fa9cbdffcf621195ba6f5f534745e3
MD5 5ad3114027394fec8a6cd4cc6fa859c9
BLAKE2b-256 92ee1ede90904e715a51c9695125d2d6a33661bf666930a815b28cb2b158b8fc

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.3.9.dev202307121689076583-cp311-cp311-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.3.9.dev202307121689076583-cp311-cp311-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 7889ea373d974f950b437ec0a7ddfbf29417b6886b2074b40c754995a5d6c392
MD5 dea5e988c130377b347050a1a0adedb7
BLAKE2b-256 7ebd138fe9745593414540e6525908c01d673eb7b79d1c41cbab05026103881f

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.3.9.dev202307121689076583-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.3.9.dev202307121689076583-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 ab1724ce128d3edf6a8e60958871fdd9a478d4069927eb6039c93bd09998966b
MD5 3817f40c9b6483065392aac9097ca9ad
BLAKE2b-256 8a31bcd77c00f487fb177999e57118cc052da2042aea8be70ef2b0d6ce3378a7

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.3.9.dev202307121689076583-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.3.9.dev202307121689076583-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 5b329214ec8ef09447d90d740babb982333a810cdf68d02a50ec63bd456ace68
MD5 130f5ad6fb55923248a2ea555fd90e31
BLAKE2b-256 7f0e59c1bec44c3e647a9dd02b8c99f4efe6a573a9e98e28a77117ce35c77e7b

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.3.9.dev202307121689076583-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.3.9.dev202307121689076583-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 1f2a7a4b75794161a274da467c33851e6e3d59da8d56609ad13e868c5c0c02d5
MD5 99187e6c0665923588a38483685c06fc
BLAKE2b-256 09833f8600bab90c6a072b4d89f07d1342c5137ab7fe48e526b64977e5ded2d1

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.3.9.dev202307121689076583-cp310-cp310-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.3.9.dev202307121689076583-cp310-cp310-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 c647607faf4221772f6ac8a923f6a29a804766bb0c7436f95b7b0d99827e90e6
MD5 f99d9f54f9a216d9bc0553a617fb08f7
BLAKE2b-256 0f62e55c7ec9bf95eee24a083b830bb8570e34c0b6fd06cafaa79f6e1a7bb403

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.3.9.dev202307121689076583-cp310-cp310-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.3.9.dev202307121689076583-cp310-cp310-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 800bfdf79fc93245abfb6590f868a03c0b62a30b3ad52d5c20beb98360079bc9
MD5 c844b830a83a6f5bcefa4477d813edd0
BLAKE2b-256 bc559a507c955068559a1fda026976791695cf2b8f18291d631597fc6f602cff

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.3.9.dev202307121689076583-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.3.9.dev202307121689076583-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 05d6ae673f36eb7e109b97fa3d3ec4beb52e18328eb3c19c9f6e1d84700a77aa
MD5 bf54e50f3ef9177e3e60cf76f41aca1d
BLAKE2b-256 59178cdde0c0f5c4a8ef4b10f2b56a9eb75a30d8c396463a6c86c7fda13d65f2

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.3.9.dev202307121689076583-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.3.9.dev202307121689076583-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 ce122074fd1d16a78976a7a09d9ebf0cfd6ff8e39a67b5e929d369b749c85c15
MD5 8485c30c64414ded016a48a3173813dc
BLAKE2b-256 b9d02fb6a0556c2870dbe92b1a2d99f3ec372f464fc5ff18ded05dfb29a9b3fa

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.3.9.dev202307121689076583-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.3.9.dev202307121689076583-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 27090be902562cf7bcb268d235cb0063ecec48cbe71ff20e76f7a69ed28b0617
MD5 0620aca867ba1d4fe32178281129d066
BLAKE2b-256 d9bcfec3cc55d010a3aac06fb495bf356c806b6fa6d74672a054f2db1a3bc466

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.3.9.dev202307121689076583-cp39-cp39-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.3.9.dev202307121689076583-cp39-cp39-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 657a69d8094eb4f050626cd8836719ccde937feb9c95f4e3cc258848c1cf7b62
MD5 1a4e848854758586231163e41d5bea59
BLAKE2b-256 e68a4e73322af1444b8ab24ed6b0a3c2be917c320e809dbba3c8b278136c676d

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.3.9.dev202307121689076583-cp39-cp39-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.3.9.dev202307121689076583-cp39-cp39-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 bfd3a138aee9fba4a87f6cb79a6eed656828719ec127fe58f322031a0c14518f
MD5 712bb3c55d6373fe1a41a51cc0105fee
BLAKE2b-256 c9461d90d9d4239442dc579594edf42ee620e458e0a37fca3cad5d367155edf8

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.3.9.dev202307121689076583-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.3.9.dev202307121689076583-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 282987c6047ecfef4181536ff6fb21f09a1160baba20b63a5083e11538c86826
MD5 31426ae9f54da33d0f4830bb9c0e5d76
BLAKE2b-256 5c1fb4f36d11d6d5453ce7b581b5357d6fbdb031d8a928f713fbd14e08badc44

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.3.9.dev202307121689076583-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.3.9.dev202307121689076583-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 ca71e9a01785f9de486fca13d577f9843a70bbf720d71523af7a45f593fdf493
MD5 b35a009f54906b87746f3dbe573a5ff6
BLAKE2b-256 a1b38aa1d81943ebe62973bb58495925f03285969babbacf4316d88f001c1473

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.3.9.dev202307121689076583-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.3.9.dev202307121689076583-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 cfac9791523666edf89059ba8b7355808d9299268f1b61ab462884a717b70f1a
MD5 d3e0d9a0fd835d2d75419fc24000abda
BLAKE2b-256 733ab582dce49ff845e3bfe934d95eff575defc0e425971be869bb55b8d7fbcd

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.3.9.dev202307121689076583-cp38-cp38-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.3.9.dev202307121689076583-cp38-cp38-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 066fb6fa046d8360272e5f6572b2ba4eb0227acc0c9bbfb2ea468a03ed132480
MD5 eead9fabbc9d911c4d66fcee82981de9
BLAKE2b-256 2e687f8eaacd16056a5e62ff17bae0a41de611a8bfec82232eb07110ea6779b8

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.3.9.dev202307121689076583-cp38-cp38-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.3.9.dev202307121689076583-cp38-cp38-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 c03c82e0f7ebdbdac9557820ebf529c5df07f170c7b991ae26773af86840568c
MD5 1228338bcce03376f55ffc2fd768e968
BLAKE2b-256 5e333df4159247ef2da88e2a764aa4512e2a064c24a47c2041c57201bf5c025a

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.3.9.dev202307121689076583-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.3.9.dev202307121689076583-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 3ecb2fc30a8940c9974e536bc2345cd429eb5d403177a515da6da7f6524373b6
MD5 3dd8f444e6a8a2d75806044ffabc00b3
BLAKE2b-256 e462a4b25b69c819f7c09f4a37100ce26264aaf7b084edeb97a3c9eb97f7bcc9

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.3.9.dev202307121689076583-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.3.9.dev202307121689076583-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 542ad507bb73a28f0874004086aff10371e794be5202c54e5e49f758769e6ad8
MD5 0a84136fb39c2f0eb46830a88dd7a191
BLAKE2b-256 3feb664c0924e82773e8ad9489cede5cc2f2a0480fdd5c879accb67985a1f3ae

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page