Skip to main content

Bayesian networks and other Probabilistic Graphical Models.

Project description

Description: pyAgrum is a scientific C++ and Python library dedicated to Bayesian Networks and other Probabilistic Graphical Models. It provides a high-level interface to the part of the C++ aGrUM library allowing to create, model, learn, use, calculate with and embed Bayesian Networks and other graphical models. Some specific (python and C++) codes are added in order to simplify and extend the aGrUM API. The module is mainly generated by the SWIG interface generator.

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

pyAgrum_nightly-1.8.3.9.dev202307131689183073-cp311-cp311-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.11 Windows x86-64

pyAgrum_nightly-1.8.3.9.dev202307131689183073-cp311-cp311-macosx_11_0_arm64.whl (3.8 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

pyAgrum_nightly-1.8.3.9.dev202307131689183073-cp311-cp311-macosx_10_9_x86_64.whl (4.3 MB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

pyAgrum_nightly-1.8.3.9.dev202307131689183073-cp310-cp310-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.10 Windows x86-64

pyAgrum_nightly-1.8.3.9.dev202307131689183073-cp310-cp310-macosx_11_0_arm64.whl (3.8 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

pyAgrum_nightly-1.8.3.9.dev202307131689183073-cp310-cp310-macosx_10_9_x86_64.whl (4.3 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

pyAgrum_nightly-1.8.3.9.dev202307131689183073-cp39-cp39-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.9 Windows x86-64

pyAgrum_nightly-1.8.3.9.dev202307131689183073-cp39-cp39-macosx_11_0_arm64.whl (3.8 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

pyAgrum_nightly-1.8.3.9.dev202307131689183073-cp39-cp39-macosx_10_9_x86_64.whl (4.3 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

pyAgrum_nightly-1.8.3.9.dev202307131689183073-cp38-cp38-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.8 Windows x86-64

pyAgrum_nightly-1.8.3.9.dev202307131689183073-cp38-cp38-macosx_11_0_arm64.whl (3.8 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

pyAgrum_nightly-1.8.3.9.dev202307131689183073-cp38-cp38-macosx_10_9_x86_64.whl (4.3 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

File details

Details for the file pyAgrum_nightly-1.8.3.9.dev202307131689183073-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.3.9.dev202307131689183073-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 1dbadf611ec6ed4c30a8109728bfb4d77d99a5c94b0c619e612b5098c4537db4
MD5 a30e0ad155f20dbf9e59416be19341f5
BLAKE2b-256 15aa87f710a2991406b78286f6399ba22a0a3a40df652bef980dba2c6118357b

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.3.9.dev202307131689183073-cp311-cp311-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.3.9.dev202307131689183073-cp311-cp311-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 5c889487cb9fbde2811de6f965899bea035da68d4699559b6b13343c3ded13dc
MD5 754af71b0b2ac50055fa3361a8d98b3a
BLAKE2b-256 b10b40b3c2bb1496f0627a3d1e0a98fc92657c47b1ea7769aeccaa64e05bdd14

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.3.9.dev202307131689183073-cp311-cp311-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.3.9.dev202307131689183073-cp311-cp311-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 265ab9f432440be363875edcd56e33c92b098e72bd0b14c1ec2c77a7de9f5d2e
MD5 799826208c5cce5d17d05679ab3a1cbc
BLAKE2b-256 593421688fe9b8d1bb5ce3a515ad78090cb10ac83a51ad6ea5ca92439b82d3c3

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.3.9.dev202307131689183073-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.3.9.dev202307131689183073-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 3fca7bc0a3081e2ddc81ba7ad5942d0bfbaf63ccfa2d135156ed75a048722bf8
MD5 b1608491afc1a97f43f42d6cd4343855
BLAKE2b-256 936e8412ba2b31e4c083c5235b73fa260466d691d1f1ca601830860e6718201f

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.3.9.dev202307131689183073-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.3.9.dev202307131689183073-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 c51e3b33180d70626ff23d8855237696f8139a1c8a21adbb92dc559d28827052
MD5 e1c9f6b896318c464a9645a1a7a9a6ca
BLAKE2b-256 e6f34400d99521848d7c6473b66bbdb452ffc26a17bc08d8daeb746a89f87192

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.3.9.dev202307131689183073-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.3.9.dev202307131689183073-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 a429e03e713f03f1b5db0f2f21a796294c56c6a0113441434d52b015bfb4520d
MD5 1d29187720794c386a3e6848055b742c
BLAKE2b-256 07f61ba0966f964e9f446c458d538594599401a8cb18e68172d1330133de5e24

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.3.9.dev202307131689183073-cp310-cp310-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.3.9.dev202307131689183073-cp310-cp310-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 832e17dcfd59daf3eb09699cb86055d51635e564c7e76063192f379f27073783
MD5 9a24d580ac6a5b0c2ad14528b39d83ab
BLAKE2b-256 2b75df747caa9dc406125649656a6e6b4663c4f4952748327aeae6acd2aa305a

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.3.9.dev202307131689183073-cp310-cp310-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.3.9.dev202307131689183073-cp310-cp310-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 7779f1a0eb70c4927418b39539d4c9a7ec2db2c19b650cbb5a7d6ad895debd6f
MD5 68bebdf91ea55f4f928e48c39e74490f
BLAKE2b-256 c17de46960a73c762f4ecf1a5754e2cb5006447e6f83a4cec46700af4e592190

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.3.9.dev202307131689183073-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.3.9.dev202307131689183073-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 cb9aefc4d6133a414c483160046d1fe2c92fa22f87bd130a5c5ba31443d2066d
MD5 74d0e1f67d6d9d71bff8d41cdf0d4fa8
BLAKE2b-256 bf07de81e3207db6940359faba3ae8b14ac07106dd190b32da032601bfca6ffd

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.3.9.dev202307131689183073-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.3.9.dev202307131689183073-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 98dc0c9c5d3ba565609db10b484a9d9b27cc9e388fc1398be3b84d6a124ebe92
MD5 a726b0653c75971d4d53d30d6eea67eb
BLAKE2b-256 d9f27415a9495f6b081382b85e76fcb4cfb1fc27cfaab2e4c77ae8aabfd3132e

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.3.9.dev202307131689183073-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.3.9.dev202307131689183073-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 cf110c4a27637406e07d92c4ec349ce3b1fd4173c97afad5e3c9c5b3129a32d6
MD5 d226209693150d104f4c06f03752d2c5
BLAKE2b-256 2760a1010a7e8d0760272495b01277ea9230ad79b3660cd420e6a62e79d5aad2

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.3.9.dev202307131689183073-cp39-cp39-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.3.9.dev202307131689183073-cp39-cp39-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 e6de94697895185ee60645b0f0c3b4b49999852d9cc118e6bdcfb9514126c976
MD5 0982f4d906ccbae04f8f4b6cca99ac92
BLAKE2b-256 9dc9b239aac493f6136e9a76ee8cf9641d4154403e663631538bd8c2c3ca014e

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.3.9.dev202307131689183073-cp39-cp39-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.3.9.dev202307131689183073-cp39-cp39-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 589c0f7ab92448a18dabbd3e6cfe2bcf41897636af91e12f251e508a49f05f58
MD5 f71df39c361ad06e85be3564e7f1458d
BLAKE2b-256 ee9abbdf4c1cf7b98b2f3d1e823d336b23b8c8bf066aadc232bfe94a0f00c212

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.3.9.dev202307131689183073-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.3.9.dev202307131689183073-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 5e5881442214af4aa91a4c453cd26823b6538a2cf4d424a13c778d821cf5050c
MD5 a058a88d2b237b28bb45ec7cb45dab0c
BLAKE2b-256 b81411cd770c810d39929dcc84e350da1f82d89fff6bfed9c9131897649b1fda

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.3.9.dev202307131689183073-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.3.9.dev202307131689183073-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 b3964475a93acd906a1e66cde66f403eadf1695fae05e8dfe9e83e9ffd620d4f
MD5 f270606b10f5de5687ec1ea3dd5ca937
BLAKE2b-256 5526c501f363761871cf93cd5c62235d20e6f6cc3a718af37a9616cd2a8b35a7

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.3.9.dev202307131689183073-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.3.9.dev202307131689183073-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 dc55ac1abf53a90069e1029b0a16bd73e3e0763418bba5a60328d954b45d10b9
MD5 d820e21b0911f981a6ba62a1cb5510b1
BLAKE2b-256 30fddc05ac6236b9a3cfc495e091096e0bf746c4cca25faf10bc1045ba686a58

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.3.9.dev202307131689183073-cp38-cp38-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.3.9.dev202307131689183073-cp38-cp38-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 5e5883ac736bdb3f053310eccb619f6677ba5536aa14cee233c496abc84e826b
MD5 3e0e303f79e3f73140fbf6d3c5bde087
BLAKE2b-256 6f639c069d74fc3cc64110546ae683e0d92e8b4a72be58fb715ed79e65ff7f6c

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.3.9.dev202307131689183073-cp38-cp38-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.3.9.dev202307131689183073-cp38-cp38-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 aa592c53945076c7d644d6754a602265813dbcc3bf935572bae73d549677df41
MD5 d19a4c3a84ed41e22d52ce464a59b36f
BLAKE2b-256 c4009018714aeebf0d57088e66bc622d8264c02ff304e8d6641db85c124e16cf

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.3.9.dev202307131689183073-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.3.9.dev202307131689183073-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 d400dc961185b8c2e3253eac7526cc401075da48de986329cbb36e8194604b5d
MD5 9d67281b910e73f743a21a3167085d73
BLAKE2b-256 8655f0158c935bd173c254e53beb20e4a06f2ac2a281fa1a22852048b4ac93b4

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.3.9.dev202307131689183073-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.3.9.dev202307131689183073-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 a873721823a51f3a2d541208f7684556fb13eb386ee7b317311c5a9576c11abe
MD5 95b0465a5aca5ef48d6d3fdeaf58135d
BLAKE2b-256 9e00b0417d008601a8a940ddc4f2170d655d7088fe08fe4ecde7564a7b289325

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page